[物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程

试证明: 利用连续性方程, 可将动量方程 (2. 14) 及未燃流体质量平衡方程 (2. 16) 分别化为 (2. 19) 与 (2. 20) 的形式.

 

证明: 注意到 $$\beex \bea \cfrac{\p}{\p t}(\rho{\bf u}) +\Div(\rho{\bf u}\otimes{\bf u})&=\sez{\cfrac{\p\rho}{\p t}+\Div(\rho{\bf u})}{\bf u} +\rho \sez{\cfrac{\p{\bf u}}{\p t}+({\bf u}\cdot\n){\bf u}} =\rho\cfrac{\rd {\bf u}}{\rd t},\\ -\Div{\bf P}&=-\Div\sez{-p{\bf I}+\sex{\mu'-\cfrac{2}{3}\mu}(\Div{\bf u}) {\bf I}+2\mu {\bf S}}\\ &=\n p-\Div[\mu(2{\bf S})]-n\sez{\sex{\mu-\cfrac{2}{3}\mu}\Div{\bf u}};\\ \cfrac{\p}{\p t}(\rho Z)+\Div(\rho Z{\bf u}) &=\sez{\cfrac{\p\rho }{\p t}+\Div(\rho {\bf u})}Z +\rho\sez{\cfrac{\p Z}{\p t}+({\bf u}\cdot\n)Z} =\rho\cfrac{\rd Z}{\rd t} \eea \eeex$$ 即知结论.

 

时间: 2024-10-21 10:06:38

[物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程的相关文章

[物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程

试证明: 利用连续性方程及动量方程, 能量守恒方程 (2. 15) 可化为 (2. 21) 的形式.   证明: 注意到 $$\beex \bea &\quad\cfrac{\p}{\p t}\sex{\cfrac{1}{2}\rho u^2} +\Div\sez{\cfrac{1}{2}\rho u^2{\bf u}-{\bf P}{\bf u}} -\rho {\bf F}\cdot{\bf u}\\ &=\cfrac{u^2}{2}\cfrac{\p \rho}{\p t} +\cf

[物理学与PDEs]第4章习题参考解答

[物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程   [物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程   [物理学与PDEs]第4章习题3 一维理想反应流体力学方程组的数学结构   [物理学与PDEs]第4章习题4 一维理想反应流体力学方程组的守恒律形式及其 R.H. 条件

[物理学与PDEs]第2章习题13 将 $p$ - 方程组化为守恒律形式的一阶拟线性对称双曲组

试引进新的未知函数, 将 $p$ - 方程组 $$\beex \bea \cfrac{\p \tau}{\p t}-\cfrac{\p u}{\p x}&=0,\\ \cfrac{\p u}{\p t}+\cfrac{\p }{\p x}p(\tau)&=F. \eea \eeex$$ 化为守恒律形式的一阶拟线性对称双曲组. 这里假定 $p'(\tau)<0$.   解答: 由于流场是均熵流, 而 $$\bex \rd e=-p\rd \tau. \eex$$ 取 $$\bex W=

[物理学与PDEs]第2章习题参考解答

[物理学与PDEs]第2章习题1 无旋时的 Euler 方程   [物理学与PDEs]第2章习题2 质量力有势时的能量方程   [物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题   [物理学与PDEs]第2章习题4 习题 3 的变分   [物理学与PDEs]第2章习题5 正应力的平均值   [物理学与PDEs]第2章习题6 有旋的 Navier-Stokes 方程组   [物理学与PDEs]第2章习题7 一维不可压理想流体的求解   [物理学与PDEs]第2章习题8

[物理学与PDEs]第1章习题参考解答

[物理学与PDEs]第1章习题1 无限长直线的电场强度与电势   [物理学与PDEs]第1章习题2 均匀带电球面的电场强度与电势   [物理学与PDEs]第1章习题3 常场强下电势的定解问题   [物理学与PDEs]第1章习题4 偶极子的极限电势   [物理学与PDEs]第1章习题5 偶极子的电场强度   [物理学与PDEs]第1章习题6 无限长载流直线的磁场   [物理学与PDEs]第1章习题7 载流线圈的磁场   [物理学与PDEs]第1章习题8 磁场分布 $\ra$ 电流分布    [物理

[物理学与PDEs]第3章习题参考解答

[物理学与PDEs]第3章习题1 只有一个非零分量的磁场   [物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿沿流线的一个守恒量   [物理学与PDEs]第3章习题3电磁场的矢势在 Lorentz 规范下满足的方程   [物理学与PDEs]第3章习题4 理想磁流体的能量守恒方程   [物理学与PDEs]第3章习题5 一维理想磁流体力学方程组的数学结构   [物理学与PDEs]第3章习题6 Lagrange 坐标下的一维理想磁流体力学方程组的数学结构   [物理学与PDEs]

[物理学与PDEs]第4章习题4 一维理想反应流体力学方程组的守恒律形式及其 R.H. 条件

写出在忽略粘性与热传导性, 即设 $\mu=\mu'=\kappa=0$ 的情况, 在 Euler 坐标系下具守恒律形式的一维反应流动力学方程组. 由此求出在解的强间断线上应满足的 R.H. 条件 (见第二章 $\S 4$), 并证明越过强间断线, 函数 $Z$ 保持连续.   解答:   (1)  具守恒律形式的一维反应流动力学方程组为 $$\beex \bea \cfrac{\p \rho}{\p t}+\cfrac{\p}{\p x}(\rho u)&=0,\\ \cfrac{\p}{\p

[物理学与PDEs]第1章习题5 偶极子的电场强度

试计算由习题 4 给出的电偶极子的所形成的电场的电场强度. 解答: $$\beex \bea {\bf E}(P)&=\cfrac{1}{4\pi\ve_0} \sez{\cfrac{-q}{r_{P_0P}^3}{\bf r}_{P_0P}+\cfrac{q}{r_{P_1P}^3}{\bf r}_{P_1P}}\\ &=\cfrac{q}{4\pi \ve_0} \sez{ \sex{-\cfrac{1}{r_{P_0P}^3}+\cfrac{1}{r_{P_0P}^3}}{\bf r

[物理学与PDEs]第3章习题3电磁场的矢势在 Lorentz 规范下满足的方程

设 $\phi$ 及 ${\bf A}$ 分别为电磁场的标势及矢势 (见第一章 $\S$ 6). 试证明: 若 $\phi$ 及 ${\bf A}$ 满足条件 $$\bex \phi+\cfrac{1}{\sigma \mu_0}\Div{\bf A}=0, \eex$$ 则方程 (2. 32) 可写为如下的形式: $$\bex \cfrac{\p {\bf A}}{\p t}={\bf u}\times\rot{\bf A}+\cfrac{1}{\sigma\mu_0}\lap{\bf A}.