Python 奇技淫巧

显示有限的接口到外部

当发布python第三方package时,并不希望代码中所有的函数或者class可以被外部import,在__init__.py中添加__all__属性,该list中填写可以import的类或者函数名, 可以起到限制的import的作用, 防止外部import其他函数或者类。


  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. from base import APIBase
  4. from client import Client
  5. from decorator import interface, export, stream
  6. from server import Server
  7. from storage import Storage
  8. from util import (LogFormatter, disable_logging_to_stderr,
  9. enable_logging_to_kids, info)
  10. __all__ = ['APIBase', 'Client', 'LogFormatter', 'Server',
  11. 'Storage', 'disable_logging_to_stderr', 'enable_logging_to_kids',
  12. 'export', 'info', 'interface', 'stream']

with的魔力

with语句需要支持上下文管理协议的对象, 上下文管理协议包含__enter____exit__两个方法。 with语句建立运行时上下文需要通过这两个方法执行进入和退出操作。

其中上下文表达式是跟在with之后的表达式, 该表达式返回一个上下文管理对象。


  1. # 常见with使用场景
  2. with open("test.txt", "r") as my_file: # 注意, 是__enter__()方法的返回值赋值给了my_file,
  3. for line in my_file:
  4. print line

详细原理可以查看这篇文章, 浅谈 Python 的 with 语句

知道具体原理,我们可以自定义支持上下文管理协议的类,类中实现__enter____exit__方法。


  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. class MyWith(object):
  4. def __init__(self):
  5. print "__init__ method"
  6. def __enter__(self):
  7. print "__enter__ method"
  8. return self # 返回对象给as后的变量
  9. def __exit__(self, exc_type, exc_value, exc_traceback):
  10. print "__exit__ method"
  11. if exc_traceback is None:
  12. print "Exited without Exception"
  13. return True
  14. else:
  15. print "Exited with Exception"
  16. return False
  17. def test_with():
  18. with MyWith() as my_with:
  19. print "running my_with"
  20. print "------分割线-----"
  21. with MyWith() as my_with:
  22. print "running before Exception"
  23. raise Exception
  24. print "running after Exception"
  25. if __name__ == '__main__':
  26. test_with()

执行结果如下:


  1. __init__ method
  2. __enter__ method
  3. running my_with
  4. __exit__ method
  5. Exited without Exception
  6. ------分割线-----
  7. __init__ method
  8. __enter__ method
  9. running before Exception
  10. __exit__ method
  11. Exited with Exception
  12. Traceback (most recent call last):
  13. File "bin/python", line 34, in <module>
  14. exec(compile(__file__f.read(), __file__, "exec"))
  15. File "test_with.py", line 33, in <module>
  16. test_with()
  17. File "test_with.py", line 28, in test_with
  18. raise Exception
  19. Exception

证明了会先执行__enter__方法, 然后调用with内的逻辑, 最后执行__exit__做退出处理, 并且, 即使出现异常也能正常退出

filter的用法

相对filter而言, map和reduce使用的会更频繁一些, filter正如其名字, 按照某种规则过滤掉一些元素。


  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. lst = [1, 2, 3, 4, 5, 6]
  4. # 所有奇数都会返回True, 偶数会返回False被过滤掉
  5. print filter(lambda x: x % 2 != 0, lst)
  6. #输出结果
  7. [1, 3, 5]

一行作判断

当条件满足时, 返回的为等号后面的变量, 否则返回else后语句。


  1. lst = [1, 2, 3]
  2. new_lst = lst[0] if lst is not None else None
  3. print new_lst
  4. # 打印结果
  5. 1

装饰器之单例

使用装饰器实现简单的单例模式


  1. # 单例装饰器
  2. def singleton(cls):
  3. instances = dict() # 初始为空
  4. def _singleton(*args, **kwargs):
  5. if cls not in instances: #如果不存在, 则创建并放入字典
  6. instances[cls] = cls(*args, **kwargs)
  7. return instances[cls]
  8. return _singleton
  9. @singleton
  10. class Test(object):
  11. pass
  12. if __name__ == '__main__':
  13. t1 = Test()
  14. t2 = Test()
  15. # 两者具有相同的地址
  16. print t1, t2

staticmethod装饰器

类中两种常用的装饰, 首先区分一下他们:

  • 普通成员函数, 其中第一个隐式参数为对象
  • classmethod装饰器, 类方法(给人感觉非常类似于OC中的类方法), 其中第一个隐式参数为类
  • staticmethod装饰器, 没有任何隐式参数. python中的静态方法类似与C++中的静态方法

  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. class A(object):
  4. # 普通成员函数
  5. def foo(self, x):
  6. print "executing foo(%s, %s)" % (self, x)
  7. @classmethod # 使用classmethod进行装饰
  8. def class_foo(cls, x):
  9. print "executing class_foo(%s, %s)" % (cls, x)
  10. @staticmethod # 使用staticmethod进行装饰
  11. def static_foo(x):
  12. print "executing static_foo(%s)" % x
  13. def test_three_method():
  14. obj = A()
  15. # 直接调用噗通的成员方法
  16. obj.foo("para") # 此处obj对象作为成员函数的隐式参数, 就是self
  17. obj.class_foo("para") # 此处类作为隐式参数被传入, 就是cls
  18. A.class_foo("para") #更直接的类方法调用
  19. obj.static_foo("para") # 静态方法并没有任何隐式参数, 但是要通过对象或者类进行调用
  20. A.static_foo("para")
  21. if __name__ == '__main__':
  22. test_three_method()
  23. # 函数输出
  24. executing foo(<__main__.A object at 0x100ba4e10>, para)
  25. executing class_foo(<class '__main__.A'>, para)
  26. executing class_foo(<class '__main__.A'>, para)
  27. executing static_foo(para)
  28. executing static_foo(para)

property装饰器

  • 定义私有类属性

property与装饰器结合实现属性私有化(更简单安全的实现get和set方法)。


  1. #python内建函数
  2. property(fget=None, fset=None, fdel=None, doc=None)

fget是获取属性的值的函数,fset是设置属性值的函数,fdel是删除属性的函数,doc是一个字符串(像注释一样)。从实现来看,这些参数都是可选的。

property有三个方法getter(), setter()delete() 来指定fget, fset和fdel。 这表示以下这行:


  1. class Student(object):
  2. @property #相当于property.getter(score) 或者property(score)
  3. def score(self):
  4. return self._score
  5. @score.setter #相当于score = property.setter(score)
  6. def score(self, value):
  7. if not isinstance(value, int):
  8. raise ValueError('score must be an integer!')
  9. if value < 0 or value > 100:
  10. raise ValueError('score must between 0 ~ 100!')
  11. self._score = value

iter魔法

  • 通过yield和__iter__的结合,我们可以把一个对象变成可迭代的
  • 通过__str__的重写, 可以直接通过想要的形式打印对象

  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. class TestIter(object):
  4. def __init__(self):
  5. self.lst = [1, 2, 3, 4, 5]
  6. def read(self):
  7. for ele in xrange(len(self.lst)):
  8. yield ele
  9. def __iter__(self):
  10. return self.read()
  11. def __str__(self):
  12. return ','.join(map(str, self.lst))
  13. __repr__ = __str__
  14. def test_iter():
  15. obj = TestIter()
  16. for num in obj:
  17. print num
  18. print obj
  19. if __name__ == '__main__':
  20. test_iter()

神奇partial

partial使用上很像C++中仿函数(函数对象)。

在stackoverflow给出了类似与partial的运行方式:


  1. def partial(func, *part_args):
  2. def wrapper(*extra_args):
  3. args = list(part_args)
  4. args.extend(extra_args)
  5. return func(*args)
  6. return wrapper

利用用闭包的特性绑定预先绑定一些函数参数,返回一个可调用的变量, 直到真正的调用执行:


  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. from functools import partial
  4. def sum(a, b):
  5. return a + b
  6. def test_partial():
  7. fun = partial(sum, 2) # 事先绑定一个参数, fun成为一个只需要一个参数的可调用变量
  8. print fun(3) # 实现执行的即是sum(2, 3)
  9. if __name__ == '__main__':
  10. test_partial()
  11. # 执行结果
  12. 5

神秘eval

eval我理解为一种内嵌的python解释器(这种解释可能会有偏差), 会解释字符串为对应的代码并执行, 并且将执行结果返回。

看一下下面这个例子:


  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. def test_first():
  4. return 3
  5. def test_second(num):
  6. return num
  7. action = { # 可以看做是一个sandbox
  8. "para": 5,
  9. "test_first" : test_first,
  10. "test_second": test_second
  11. }
  12. def test_eavl():
  13. condition = "para == 5 and test_second(test_first) > 5"
  14. res = eval(condition, action) # 解释condition并根据action对应的动作执行
  15. print res
  16. if __name__ == '_

exec

  • exec在Python中会忽略返回值, 总是返回None, eval会返回执行代码或语句的返回值
  • execeval在执行代码时, 除了返回值其他行为都相同
  • 在传入字符串时, 会使用compile(source, '<string>', mode)编译字节码。 mode的取值为execeval

  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. def test_first():
  4. print "hello"
  5. def test_second():
  6. test_first()
  7. print "second"
  8. def test_third():
  9. print "third"
  10. action = {
  11. "test_second": test_second,
  12. "test_third": test_third
  13. }
  14. def test_exec():
  15. exec "test_second" in action
  16. if __name__ == '__main__':
  17. test_exec() # 无法看到执行结果

getattr

getattr(object, name[, default])返回对象的命名属性,属性名必须是字符串。如果字符串是对象的属性名之一,结果就是该属性的值。例如, getattr(x, ‘foobar’) 等价于 x.foobar。 如果属性名不存在,如果有默认值则返回默认值,否则触发 AttributeError 。


  1. # 使用范例
  2. class TestGetAttr(object):
  3. test = "test attribute"
  4. def say(self):
  5. print "test method"
  6. def test_getattr():
  7. my_test = TestGetAttr()
  8. try:
  9. print getattr(my_test, "test")
  10. except AttributeError:
  11. print "Attribute Error!"
  12. try:
  13. getattr(my_test, "say")()
  14. except AttributeError: # 没有该属性, 且没有指定返回值的情况下
  15. print "Method Error!"
  16. if __name__ == '__main__':
  17. test_getattr()
  18. # 输出结果
  19. test attribute
  20. test method

命令行处理


  1. def process_command_line(argv):
  2. """
  3. Return a 2-tuple: (settings object, args list).
  4. `argv` is a list of arguments, or `None` for ``sys.argv[1:]``.
  5. """
  6. if argv is None:
  7. argv = sys.argv[1:]
  8. # initialize the parser object:
  9. parser = optparse.OptionParser(
  10. formatter=optparse.TitledHelpFormatter(width=78),
  11. add_help_option=None)
  12. # define options here:
  13. parser.add_option( # customized description; put --help last
  14. '-h', '--help', action='help',
  15. help='Show this help message and exit.')
  16. settings, args = parser.parse_args(argv)
  17. # check number of arguments, verify values, etc.:
  18. if args:
  19. parser.error('program takes no command-line arguments; '
  20. '"%s" ignored.' % (args,))
  21. # further process settings & args if necessary
  22. return settings, args
  23. def main(argv=None):
  24. settings, args = process_command_line(argv)
  25. # application code here, like:
  26. # run(settings, args)
  27. return 0 # success
  28. if __name__ == '__main__':
  29. status = main()
  30. sys.exit(status)

读写csv文件


  1. # 从csv中读取文件, 基本和传统文件读取类似
  2. import csv
  3. with open('data.csv', 'rb') as f:
  4. reader = csv.reader(f)
  5. for row in reader:
  6. print row
  7. # 向csv文件写入
  8. import csv
  9. with open( 'data.csv', 'wb') as f:
  10. writer = csv.writer(f)
  11. writer.writerow(['name', 'address', 'age']) # 单行写入
  12. data = [
  13. ( 'xiaoming ','china','10'),
  14. ( 'Lily', 'USA', '12')]
  15. writer.writerows(data) # 多行写入

各种时间形式转换

只发一张网上的图, 然后查文档就好了, 这个是记不住的

字符串格式化

一个非常好用, 很多人又不知道的功能:


  1. >>> name = "andrew"
  2. >>> "my name is {name}".format(name=name)
  3. 'my name is andrew'

参考链接

本文来自合作伙伴“Linux中国”,原文发表于2013-04-02.

时间: 2024-12-22 22:50:44

Python 奇技淫巧的相关文章

你所不知道的Python奇技淫巧13招【实用】_python

有时候你会看到很Cool的Python代码,你惊讶于它的简洁,它的优雅,你不由自主地赞叹:竟然还能这样写.其实,这些优雅的代码都要归功于Python的特性,只要你能掌握这些Pythonic的技巧,你一样可以写出像诗一样的Python代码. 1.导入模块 你是不是经常对调用模块时输入一长串模块索引感到头疼?说实在的,数量少的时候或许还可以勉强忍受,一旦程序规模上去了,这也是一项不容小觑的工程. #Bad import urllib.request url = r'http://www.landsb

Python中使用bidict模块双向字典结构的奇技淫巧_python

快速入门 模块提供三个类来处理一对一映射类型的一些操作 'bidict', 'inverted', 'namedbidict' >>> import bidict >>> dir(bidict) ['MutableMapping', '_LEGALNAMEPAT', '_LEGALNAMERE', '__builtins__', '__doc__', '__file__', '__name__', '__package__', 'bidict', 'inverted',

Google Python编程风格指南

背景 Python 是 Google主要的脚本语言.这本风格指南主要包含的是针对python的编程准则. 为帮助读者能够将代码准确格式化,我们提供了针对 Vim的配置文件 .对于Emacs用户,保持默认设置即可. Python语言规范 Lint 对你的代码运行pylint 定义: pylint是一个在Python源代码中查找bug的工具. 对于C和C++这样的不那么动态的(译者注: 原文是less dynamic)语言, 这些bug通常由编译器来捕获. 由于Python的动态特性, 有些警告可能

Python元类(Metaclasses)

"元类的魔幻变化比 99% 的用户所担心的更多,当你搞不懂是否真的需要用它的时候,就是不需要."-Tim http://www.aliyun.com/zixun/aggregation/29867.html">Peters 本文源于在 PyCon UK 2008 上的一个快速演讲. 元类被称为 Python 中的"深奥的巫术".尽管你需要用到它的地方极少(除非你基于 zope编程),可事实上它的基础理论其实令人惊讶地易懂. 一切皆对象 ◆ 一切皆对象

Python检测字符串中是否包含某字符集合中的字符

  这篇文章主要介绍了Python检测字符串中是否包含某字符集合中的字符,需要的朋友可以参考下 目的 检测字符串中是否包含某字符集合中的字符 方法 最简洁的方法如下,清晰,通用,快速,适用于任何序列和容器 代码如下: def containAny(seq,aset): for c in seq: if c in aset: return True return False 第二种适用itertools模块来可以提高一点性能,本质上与前者是同种方法(不过此方法违背了Python的核心观点:简洁,清

Python中字典的基本知识初步介绍

  这篇文章主要介绍了Python中字典的基本知识初步介绍,是Python入门中的基础知识,需要的朋友可以参考下 字典是可变的,并且可以存储任意数量的Python对象,包括其他容器类型另一个容器类型.字典包括键对(称为项目)及其相应的值. Python字典也被称为关联数组或哈希表.字典的一般语法如下: ? 1 dict = {'Alice': '2341', 'Beth': '9102', 'Cecil': '3258'} 可以用下面的方式创建字典: ? 1 2 dict1 = { 'abc':

详解Python中的type()方法的使用

  这篇文章主要介绍了详解Python中的type()方法的使用,是Python入门中的基础知识,需要的朋友可以参考下 type()方法返回传递变量的类型.如果传递变量是字典那么它将返回一个字典类型. 语法 以下是type()方法的语法: ? 1 type(dict) 参数 dict -- 这是字典 返回值 此方法返回传递变量的类型. 例子 下面的例子显示type()方法的使用 ? 1 2 3 4 #!/usr/bin/python   dict = {'Name': 'Zara', 'Age'

在Python中操作字典之clear()方法的使用

  这篇文章主要介绍了在Python中操作字典之clear()方法的使用,是Python入门的基础知识,需要的朋友可以参考下 clear()方法将删除字典中的所有项目(清空字典) 语法 以下是clear()方法的语法: ? 1 dict.clear() 参数 NA 返回值 此方法不返回任何值. 例子 下面的例子显示了clear()方法的使用 ? 1 2 3 4 5 6 7 #!/usr/bin/python   dict = {'Name': 'Zara', 'Age': 7};   print

浅谈Python中copy()方法的使用

  这篇文章主要介绍了浅谈Python中copy()方法的使用,Python中的拷贝分为潜拷贝和深拷贝,本文只是简单介绍用法,需要的朋友可以参考下 copy()方法返回字典的浅拷贝. 语法 以下是copy()方法的语法: ? 1 dict.copy() 参数 NA 返回值 此方法返回字典的浅拷贝. 例子 下面的例子显示了copy()方法的使用. ? 1 2 3 4 5 6 #!/usr/bin/python   dict1 = {'Name': 'Zara', 'Age': 7};   dict