题目描述:
输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并输出它的后序遍历序列。
分析:
前序遍历的第一个节点时根,在中序中找到这个根节点,然后左边就是左子树,右边就是右子树,这样就可以递归。
用数组来记录,然后每次还重新弄数组,把左子树复制过来,右子树复制过来,递归。
public TreeNode constructionOfTree(int[] pre, int[] in) {
if (pre == null || pre.length == 0 || in == null || in.length == 0) {
return null;
}
if (pre.length == 1 && in.length == 1) {
return new TreeNode(pre[0]);
}
int len = pre.length;
int root = pre[0];
TreeNode tree = new TreeNode(root);
int del = -1;
for (int i = 0; i < in.length; i++) {
if (in[i] == root) {
del = i;
break;
}
}
int right_length = in.length - del - 1;
int[] left_pre = new int[del];
int[] left_in = new int[del];
int[] right_pre = new int[right_length];
int[] right_in = new int[right_length];
for (int i = 1; i < del + 1; i++) {
left_pre[i - 1] = pre[i];
left_in[i - 1] = in[i - 1];
}
for (int i = del + 1; i < pre.length; i++) {
right_pre[i - del - 1] = pre[i];
right_in[i - del - 1] = in[i];
}
tree.left = constructionOfTree(left_pre, left_in);
tree.right = constructionOfTree(right_pre, right_in);
return tree;
}
下面这种我觉得好些,用记录长度的方式,不用重复建立数组。
/**
*
* @param preOrder 前序遍历数组
* @param inOrder 中序遍历数组
* @param length 数组长度
* @return 根结点
*/
public static BinaryTreeNode Construct(int[] preOrder, int[] inOrder,int length){
if (preOrder == null || inOrder == null || length <= 0) {
return null;
}
try {
return ConstructCore(preOrder, 0, preOrder.length - 1, inOrder, 0,inOrder.length - 1);
} catch (InvalidPutException e) {
e.printStackTrace();
return null;
}
}
/**
*
* @param PreOrder
* 前序遍历序列
* @param startPreIndex
* 前序序列开始位置
* @param endPreIndex
* 前序序列结束位置
* @param InOrder
* 中序遍历序列
* @param startInIndex
* 中序序列开始位置
* @param endInIndex
* 中序序列结束位置
* @return 根结点
* @throws InvalidPutException
*/
public static BinaryTreeNode ConstructCore(int[] preOrder,int startPreIndex, int endPreIndex,
int[] inOrder,int startInIndex, int endInIndex) throws InvalidPutException {
int rootValue = preOrder[startPreIndex];
System.out.println("rootValue = " + rootValue);
BinaryTreeNode root = new BinaryTreeNode(rootValue);
// 只有一个元素
if (startPreIndex == endPreIndex) {
if (startInIndex == endInIndex
&& preOrder[startPreIndex] == inOrder[startInIndex]) {
System.out.println("only one element");
return root;
} else {
throw new InvalidPutException();
}
}
// 在中序遍历中找到根结点的索引
int rootInIndex = startInIndex;
while (rootInIndex <= endInIndex && inOrder[rootInIndex] != rootValue) {
++rootInIndex;
}
if (rootInIndex == endInIndex && inOrder[rootInIndex] != rootValue) {
throw new InvalidPutException();
}
int leftLength = rootInIndex - startInIndex;
int leftPreOrderEndIndex = startPreIndex + leftLength;
if (leftLength > 0) {
// 构建左子树
root.leftNode = ConstructCore(preOrder, startPreIndex + 1,
leftPreOrderEndIndex, inOrder, startInIndex,
rootInIndex - 1);
}
if (leftLength < endPreIndex - startPreIndex) {
// 右子树有元素,构建右子树
root.rightNode = ConstructCore(preOrder, leftPreOrderEndIndex + 1,
endPreIndex, inOrder, rootInIndex + 1, endInIndex);
}
return root;
}
static class InvalidPutException extends Exception {
private static final long serialVersionUID = 1L;
}
public static void printPreOrder(BinaryTreeNode root) {
if (root == null) {
return;
} else {
System.out.print(root.value + " ");
}
if (root.leftNode != null) {
printPreOrder(root.leftNode);
}
if (root.rightNode != null) {
printPreOrder(root.rightNode);
}
}
public static void main(String[] args) throws Exception{
ConstructionOfTree test=new ConstructionOfTree();
int[] preOrder={1,2,4,7,3,5,6,8};
int[] inOrder={4,7,2,1,5,3,8,6};
printPreOrder(test.Construct(preOrder, inOrder, preOrder.length));
}
BinaryTreeNode.java
public class BinaryTreeNode {
public int value;
public BinaryTreeNode leftNode;
public BinaryTreeNode rightNode;
public BinaryTreeNode() {
}
public BinaryTreeNode(int value) {
this.value = value;
this.leftNode = null;
this.rightNode = null;
}
}
时间: 2025-01-03 10:04:29