《智能数据时代:企业大数据战略与实战》一1.2 大数据如何发掘价值

1.2 大数据如何发掘价值

提取出有价值的信息总是说起来容易,做起来难。从理念、技术到实践操作,任何一个环节都对我们发掘大数据的内在价值提出了挑战。
我们可以通过四个维度来思考大数据,这四个维度的内容如下:
1)体量(Volume)。大数据的数据规模很大。企业里处处充满数据,很容易积累起兆级乃至PB级的数据信息。
2)种类(Variety)。除了结构化数据,大数据还包含各种各样的非结构化数据,如文本、音频、视频、点击流量、日志文件等。
3)真实(Veracity)。从大数据整合而来的大量数据信息会存在一定的统计误差和对信息的曲解。信息的精确性对其价值至关重要。
4)速度(Velocity)。大数据对于时间是很敏感的,因为在企业中数据是时时流动的,必须使用大数据才能最大化它的商业价值,但是从中得出的结论也必须要适合于企业的历史数据才行。
4V从四个维度诠释了大数据的价值。然而,大数据的复杂性并不仅限于以上四个维度。在大数据驱动过程中,还存在其他的影响要素。而这一过程是大数据技术和分析的混合物,它们被用于定义数据资源的价值,而这种价值又可以转化成驱动商业进步的可操作元素。
这里提及的许多技术和概念并不新奇,而是在大数据的理念下“重新”出现的。最好的办法是划分成类别再进行分析,这些技术和概念包括以下内容。
传统的商务智能(BI)领域。它包括广泛的商业应用程序以及对数据进行收集、存储、分析和处理的技术。而且BI提供可操作的信息,它们使用基于事实的支持系统来做出更好的商务决策。BI通过对来自数据库、应用程序以及其他数据资源的数据进行深度分析而推动其运行。在一些领域中,BI能够提供业务运营的历史、当前和预测性视图。
数据挖掘领域。这是一个从不同角度分析数据并从中挖掘有用信息的过程。数据挖掘通常适用于静态数据或历史数据。它更关注于预测目的的建模和知识发现,而不是单纯的数据描述,其目的在于从大规模数据集中发现新模型。
统计应用程序。这些程序关注以统计原理为基础的算法,而且通常应用于与民意调查、人口普查相关的数据集以及其他的静态数据集。这些程序处理的数据理论上以样本观测值为主,用来进行评估、检测和预测分析。经验数据如调查和实验报告的数据是可分析信息的主要来源。
预测分析。预测分析是数据统计程序中的一类,它主要是对数据库中的信息和趋势进行分析,从而得到预测结论。在金融和科学领域中预测分析尤为重要,一旦有外部因素加入数据集中,就需要进行新的预测。预测分析的一个主要目的在于识别商业运作、市场和制造业中的风险与机遇。
数据建模。它是一种假设性的分析应用,其中嵌套着多重的“what-if”语句,通过算法被应用于多个数据集。理想条件下,建模信息的变动应基于对算法可用的信息,提出对数据集变化的影响的分析。数据建模与数据可视化紧密相依,数据可视化可以更直观地展示数据。
数据管理(Data Management)。数据管理是指利用计算机硬件和软件技术对数据进行有效的收集、存储、处理和应用的过程。其目的在于充分有效地发挥数据的作用,包括元数据管理、数据结构化、数据安全等内容。
数据工程(Data Engineering)。数据工程是关于数据生产和数据使用的信息系统工程。数据工程建立在大数据背景之下,是对数据库的建设与管理的工程,其主要内容包括数据资产积累、数据运营过程、数据处理结果和应用、数据时间和咨询等。
数据科学(Data Science)是研究数据的科学。数据科学利用统计学知识和计算机技术对专业领域的对象实行大数据分析与挖掘以及其他方式的数据处理,以使组织获取更大的经济效益。数据科学是一个交叉学科,在思想方法上,数据科学研究继承了统计学的一些思想,例如在大量数据上做统计性的搜索、比较、聚类或分类等分析归纳,其结论是一种相关性,而并不一定是某种因果关系。虽然都依赖大量的计算,但数据科学与计算机模拟不同,它并非是基于一个已知的数学模型,而是用大量数据的相关性取代了因果关系以及严格的理论和模型,并基于这些相关性获得新的“知识”。
以上分析仅仅是大数据先进性和商业价值的一部分。这种价值的存在有赖于人们对竞争优势的永无止境的追求,并鼓励企业组织采用更大的数据存储库,容纳组织内部和外部的数据,以更好地进行趋势揭示、数据统计、行动决策。这有助于将大数据的概念、相关工具、平台和分析普及到技术专家和高管中。

时间: 2024-10-31 23:50:00

《智能数据时代:企业大数据战略与实战》一1.2 大数据如何发掘价值的相关文章

大数据时代企业投融资创新发展

大数据时代企业投融资创新发展的问题,涉及许多前沿科学技术问题. 上世纪90年代初,我在中央党校读博期间,研究决策科学,和它包含的认识论.如何依据有效信息,科学作出决策.当时主要接受了美国西蒙教授的理论,他是一位诺贝尔经济学奖得主,提出了"有限理性"理论,认为人的理性是有限的,只能从有限的信息量中,寻找相对好的决策.比如,要买一枝鲜花,并不需要跑遍所有的花店;要找一个合适的爱人,并不需要与全世界的女人谈一遍恋爱.差不多就行了. 我同意这种观点,但说差不多就行了,未免有点过于悲观和消极,而

赛迪顾问:大数据时代企业须打好信息资源整合攻坚战

ZDNET至顶网CIO与应用频道 06月23日 北京消息:数据被认为是新时期的基础生活资料与市场要素,重要程度不亚于物质资产和人力资本.近年来,企业产生的数据量呈指数级增长,信息资源爆炸式激增,其中非结构化的数据信息达到85%左右,传统的信息资源管理技术已经无法应对大数据时代的挑战.Hadoop等大数据技术和其他大数据工具和设备的出现以及云计算数据处理与应用模式的广泛运用,为企业处理日益增长的海量非结构化数据提供了高效.可扩展的低成本解决方案,弥补了传统关系型数据库或数据仓库处理非结构化数据方面

大数据时代 企业须打好信息资源攻坚战

文章讲的是大数据时代 企业须打好信息资源攻坚战,数据被认为是新时期的基础生活资料与市场要素,重要程度不亚于物质资产和人力资本.近年来,企业产生的数据量呈指数级增长,信息资源爆炸式激增,其中非结构化的数据信息达到85%左右,传统的信息资源管理技术已经无法应对大数据时代的挑战.大数据技术和其他大数据工具与设备的出现,以及云计算数据处理与应用模式的广泛运用,为企业处理日益增长的海量非结构化数据提供了高效.可扩展的低成本解决方案,弥补了传统关系型数据库或数据仓库处理非结构化数据方面的不足,深化和拓展了企

IT现状调查:大数据时代 企业面临挑战

[IT168 调查报告]2012-2013中国IT技术趋势大调查活动于2012年10月16日启动,历经1个月的时间.在线调查期间,受到了来自ITPUB.ChinaUnix(以下简称CU)以及其它合作网站的网友的极大关注和积极参与.目前调查已经完满结束,所有的数据都在后台整理和统计之中.本次网上调查共回收调查问卷17,101份问卷,其中合格问卷为14,522份.从整体上看,今年的调查更专注,无论从数量上还是质量上都较去年有比较大的提高. 本次调查的内容涉及:企业信息化.http://www.ali

大数据时代企业所需的三大技术

作为IT领域的关键词,"大数据"不断被大书特书,对其分析利用也备受关注.另一方面,靠IT技术.现有的组织和人才技能解决不了的难题也渐渐浮出水面.这就需要"分析数据及其与业务相结合的技术". 本文总结了将数据分析应用到业务中所需的技术,以及怎样在企业中实现有效的信息应用.同时,还列举了日本国内外的先进事例. 三大技术 下面,我们来看一下大数据时代企业所需的技术有哪些? 业务技能 这里的业务技能不是指提高业绩的能力,而是指将业务过程标准化.掌握各个过程中哪些信息需要输入

大数据时代企业安全面临巨大威胁 360腾讯加紧布局

2014中国互联网大会于日前在北京国际会议中心召开,在8月27日上午的中国网络安全分论坛上,对大数据时代的企业安全的探讨成为论坛上一个重要的话题,360和腾讯等安全领域龙头均在演讲或讨论中透露出下一步在大数据时代企业安全上的布局. 近一两年,大数据这个词在互联网上火了起来,但究竟什么是大数据,对于普通用户来说还是有些难懂.其实每位用户在电脑.手机屏幕上看到的任何一个简单易用的交互窗口,背后都是有大数据引擎给予支撑. 腾讯副总裁丁珂在其题为<大数据时代的企业安全新格局>的演讲中提到,大数据引擎成

大数据时代企业CDO的新玩儿法

我们正在历经一场由大数据应用的普及引发的变革,即使如蓝色巨人IBM这样的传统巨头也在通过及时转型来应对这场技术浪潮的席卷.IBM认为,大数据与工业时代的蒸汽.电力.石油一样,都是重要的未来资源,企业需要专业人才掌握并利用这种资源,来推动这个时代的进步和发展,就好像当时有人利用石油和电力推动工业时代进步一样. 这时,企业CDO(首席数据官)责无旁贷地将挑起这个重任.CDO所关注的已经不止于企业数据库.数据工具和数据分析工具的选型,而是如何利用这些工具对企业内部.外部行业数据进行分析,并根据分析结果

大数据时代企业信息化如何应对?

随着科技进步.社会发展,信息量越来越大,数据渗透到各行各业,不少企业的数据也越来越被重视,博宏云谷为客户建立了专门的大数据服务部门,对客户的需要数据进行收集与分析,提供基于大数据的运营指导.未来将会是一个大数据应用的时代,每时每刻数据都在膨胀增长,海量的数据将会成为企业制定战略决策的重要参照,关于大数据时代对企业信息化的影响,将从以下三个方面浅谈. 1.辅助企业认识用户 目前,对于企业来说,数据越来越重要,企业可以通过海量的数据的挖掘与分析,充分了解到用户需求 .电商网站可以通过消费者购买商品的

大数据+时代 企业与用户如何做有温度的互动?

综艺热词.产品爆款.热门话题.刷屏--移动互联网时代,大众的生活变得多姿多彩,背后呈现的是我们的生活正在"网格"化,众多的数据交叉其中,留给行业无限探索空间.随着大数据应用和技术的不断深入,数据正在成为企业分析过去.把握当下.预测未来的重要依托,大数据+时代,数据对行业的影响和渗透愈发深远. 2月1日,国双数据中心发布了<2015中国互联网发展报告>.基于强大数据交互平台,将PC端.移动端等多个来源的数据进行聚合.关联与交叉,灵活运用多维度数据分析方法,该数据报告解读了大数

大数据时代 企业该如何布局全网营销

近年来,随着PC普及度和市场饱和度越来越高,相关统计数据显示,全球传统PC的销量已经从2012年的3.43亿台降至2015年的2.32亿台,从这些数据不难看出,在过去的三年,部分PC市场被其他终端所占领. 其中占领PC市场最为明显的大概就数手机端.手机承载APP.微信火速普及,并不断更新换代,在移动端衍生出海量数据.尤其是近几年手机购物的快速发展.社交媒体的广泛应用,让移动端的营销也广为广告主们关注. 移动端营销能够快速有效地捕捉消费者的需求,并具有较强的互动性,对于精准营销有较大作用.如果企业