依托于Spark Streaming /Spark SQL,封装了一套通过配置和SQL就能完成批处理和流式处理的引擎,这样可以很好的完成复杂的ETL处理过程,实现了数据的流转和变换。
完成了数据的流转和变换,接着就是查询了,通过对Spark SQL的封装,我现在可以任意指定多个数据源,举个例子,将ES的索引A` 命名为表A,将来自HDFS 的Parquet 文件命名为表B,这个时候我就可以写SQL作任意的处理了。用户要做的就是选择对应数据来源,接着就是完成SQL就好。
能实现上面的功能得益于Spark
- 统一易用的API,比如RDD/DF/DS
- 功能丰富的组件,比如流式计算/批处理,机器学习,强大的SQL支持
Spark 背后的Databricks公司是我见过最重视
- 用户API设计
- 对领域问题具有高度抽象和设计能力
API 我就不说了,Spark的用户层API都是经过精心设计的,RDD自然不必说,上层的DF/DS 已经很好用,在2.0又更进一步统一了DF/DS (DF 是DS 类型为Row的一个特例),这样可以让用户进一步减少使用和理解障碍。而且机器学习相关的API 也要慢慢迁移到 DF/DS ,进一步简化用户学习和使用成本。
对领域问题的高度抽象能力,我觉得给我特别印象深刻的是机器学习相关的,几经发展,目前形成了一套完善的ML-Pipelines 的东西,结果是啥呢? 机器学习通过抽象以下几个概念
- Estimator
- Transformer
- Pipeline
- Parameter
- DataFrame
实现了模块化。基于之上,你可以实现配置化来完成机器学习流程。
大数据现阶段在我目前看来从功能上可划分数据处理和机器学习。从架构上而言,则是流式计算和批处理。 Spark 目前的组件已经涵盖了大部分你需要的东西。加上上面我提及的几点,用好了,你会觉得很多事情变得很简单了。
微信链接:让Spark成为你的瑞士军刀
时间: 2024-10-23 21:11:59