用Python的pandas框架操作Excel文件中的数据教程_python

引言

本文的目的,是向您展示如何使用pandas 来执行一些常见的Excel任务。有些例子比较琐碎,但我觉得展示这些简单的东西与那些你可以在其他地方找到的复杂功能同等重要。作为额外的福利,我将会进行一些模糊字符串匹配,以此来展示一些小花样,以及展示pandas是如何利用完整的Python模块系统去做一些在Python中是简单,但在Excel中却很复杂的事情的。

有道理吧?让我们开始吧。
为某行添加求和项

我要介绍的第一项任务是把某几列相加然后添加一个总和栏。

首先我们将excel 数据 导入到pandas数据框架中。
 

import pandas as pd
import numpy as np
df = pd.read_excel("excel-comp-data.xlsx")
df.head()

我们想要添加一个总和栏来显示Jan、Feb和Mar三个月的销售总额。

在Excel和pandas中这都是简单直接的。对于Excel,我在J列中添加了公式sum(G2:I2)。在Excel中看上去是这样的:

下面,我们是这样在pandas中操作的:
 

df["total"] = df["Jan"] + df["Feb"] + df["Mar"]
df.head()

接下来,让我们对各列计算一些汇总信息以及其他值。如下Excel表所示,我们要做这些工作:

如你所见,我们在表示月份的列的第17行添加了SUM(G2:G16),来取得每月的总和。
进行在pandas中进行列级别的分析很简单。下面是一些例子:
 

df["Jan"].sum(), df["Jan"].mean(),df["Jan"].min(),df["Jan"].max()

(1462000, 97466.666666666672, 10000, 162000)

现在我们要把每月的总和相加得到它们的和。这里pandas和Excel有点不同。在Excel的单元格里把每个月的总和相加很简单。由于pandas需要维护整个DataFrame的完整性,所以需要一些额外的步骤。

首先,建立所有列的总和栏
 

sum_row=df[["Jan","Feb","Mar","total"]].sum()
sum_row

Jan   1462000
Feb   1507000
Mar    717000
total  3686000
dtype: int64

这很符合直觉,不过如果你希望将总和值显示为表格中的单独一行,你还需要做一些微调。

我们需要把数据进行变换,把这一系列数字转换为DataFrame,这样才能更加容易的把它合并进已经存在的数据中。T 函数可以让我们把按行排列的数据变换为按列排列。
 

df_sum=pd.DataFrame(data=sum_row).T
df_sum

在计算总和之前我们要做的最后一件事情是添加丢失的列。我们使用reindex来帮助我们完成。技巧是添加全部的列然后让pandas去添加所有缺失的数据。
 

df_sum=df_sum.reindex(columns=df.columns)
df_sum

现在我们已经有了一个格式良好的DataFrame,我们可以使用append来把它加入到已有的内容中。
 

df_final=df.append(df_sum,ignore_index=True)
df_final.tail()

额外的数据变换

另外一个例子,让我们尝试给数据集添加状态的缩写。

对于Excel,最简单的方式是添加一个新的列,对州名使用vlookup函数并填充缩写栏。

我进行了这样的操作,下面是其结果的截图:

你可以注意到,在进行了vlookup后,有一些数值并没有被正确的取得。这是因为我们拼错了一些州的名字。在Excel中处理这一问题是一个巨大的挑战(对于大型数据集而言)

幸运的是,使用pandas我们可以利用强大的python生态系统。考虑如何解决这类麻烦的数据问题,我考虑进行一些模糊文本匹配来决定正确的值。

幸运的是其他人已经做了很多这方面的工作。fuzzy wuzzy库包含一些非常有用的函数来解决这类问题。首先要确保你安装了他。

我们需要的另外一段代码是州名与其缩写的映射表。而不是亲自去输入它们,谷歌一下你就能找到这段代码code。

首先导入合适的fuzzywuzzy函数并且定义我们的州名映射表。
 

from fuzzywuzzy import fuzz
from fuzzywuzzy import process
state_to_code = {"VERMONT": "VT", "GEORGIA": "GA", "IOWA": "IA", "Armed Forces Pacific": "AP", "GUAM": "GU",
         "KANSAS": "KS", "FLORIDA": "FL", "AMERICAN SAMOA": "AS", "NORTH CAROLINA": "NC", "HAWAII": "HI",
         "NEW YORK": "NY", "CALIFORNIA": "CA", "ALABAMA": "AL", "IDAHO": "ID", "FEDERATED STATES OF MICRONESIA": "FM",
         "Armed Forces Americas": "AA", "DELAWARE": "DE", "ALASKA": "AK", "ILLINOIS": "IL",
         "Armed Forces Africa": "AE", "SOUTH DAKOTA": "SD", "CONNECTICUT": "CT", "MONTANA": "MT", "MASSACHUSETTS": "MA",
         "PUERTO RICO": "PR", "Armed Forces Canada": "AE", "NEW HAMPSHIRE": "NH", "MARYLAND": "MD", "NEW MEXICO": "NM",
         "MISSISSIPPI": "MS", "TENNESSEE": "TN", "PALAU": "PW", "COLORADO": "CO", "Armed Forces Middle East": "AE",
         "NEW JERSEY": "NJ", "UTAH": "UT", "MICHIGAN": "MI", "WEST VIRGINIA": "WV", "WASHINGTON": "WA",
         "MINNESOTA": "MN", "OREGON": "OR", "VIRGINIA": "VA", "VIRGIN ISLANDS": "VI", "MARSHALL ISLANDS": "MH",
         "WYOMING": "WY", "OHIO": "OH", "SOUTH CAROLINA": "SC", "INDIANA": "IN", "NEVADA": "NV", "LOUISIANA": "LA",
         "NORTHERN MARIANA ISLANDS": "MP", "NEBRASKA": "NE", "ARIZONA": "AZ", "WISCONSIN": "WI", "NORTH DAKOTA": "ND",
         "Armed Forces Europe": "AE", "PENNSYLVANIA": "PA", "OKLAHOMA": "OK", "KENTUCKY": "KY", "RHODE ISLAND": "RI",
         "DISTRICT OF COLUMBIA": "DC", "ARKANSAS": "AR", "MISSOURI": "MO", "TEXAS": "TX", "MAINE": "ME"}

这里有些介绍模糊文本匹配函数如何工作的例子。
 

process.extractOne("Minnesotta",choices=state_to_code.keys())

('MINNESOTA', 95)

process.extractOne("AlaBAMMazzz",choices=state_to_code.keys(),score_cutoff=80)

现在我知道它是如何工作的了,我们创建自己的函数来接受州名这一列的数据然后把他转换为一个有效的缩写。这里我们使用score_cutoff的值为80。你可以做一些调整,看看哪个值对你的数据来说比较好。你会注意到,返回值要么是一个有效的缩写,要么是一个np.nan 所以域中会有一些有效的值。
 

def convert_state(row):
  abbrev = process.extractOne(row["state"],choices=state_to_code.keys(),score_cutoff=80)
  if abbrev:
    return state_to_code[abbrev[0]]
  return np.nan

把这列添加到我们想要填充的单元格,然后用NaN填充它
 

df_final.insert(6, "abbrev", np.nan)
df_final.head()

我们使用apply 来把缩写添加到合适的列中。
 

df_final['abbrev'] = df_final.apply(convert_state, axis=1)
df_final.tail()

我觉的这很酷。我们已经开发出了一个非常简单的流程来智能的清理数据。显然,当你只有15行左右数据的时候这没什么了不起的。但是如果是15000行呢?在Excel中你就必须进行一些人工清理了。
分类汇总

在本文的最后一节中,让我们按州来做一些分类汇总(subtotal)。

在Excel中,我们会用subtotal 工具来完成。

输出如下:

在pandas中创建分类汇总,是使用groupby 来完成的。
 

df_sub=df_final[["abbrev","Jan","Feb","Mar","total"]].groupby('abbrev').sum()
df_sub

然后,我们想要通过对data frame中所有的值使用 applymap 来把数据单位格式化为货币。
 

def money(x):
  return "${:,.0f}".format(x)

formatted_df = df_sub.applymap(money)
formatted_df

格式化看上去进行的很顺利,现在我们可以像之前那样获取总和了。
 

sum_row=df_sub[["Jan","Feb","Mar","total"]].sum()
sum_row

 

Jan   1462000
Feb   1507000
Mar    717000
total  3686000
dtype: int64

把值变换为列然后进行格式化。
 

df_sub_sum=pd.DataFrame(data=sum_row).T
df_sub_sum=df_sub_sum.applymap(money)
df_sub_sum

最后,把总和添加到DataFrame中。
 

final_table = formatted_df.append(df_sub_sum)
final_table

你可以注意到总和行的索引号是‘0'。我们想要使用rename 来重命名它。
 

final_table = final_table.rename(index={0:"Total"})
final_table

结论

到目前为止,大部分人都已经知道使用pandas可以对数据做很多复杂的操作——就如同Excel一样。因为我一直在学习pandas,但我发现我还是会尝试记忆我是如何在Excel中完成这些操作的而不是在pandas中。我意识到把它俩作对比似乎不是很公平——它们是完全不同的工具。但是,我希望能接触到哪些了解Excel并且想要学习一些可以满足分析他们数据需求的其他替代工具的那些人。我希望这些例子可以帮助到其他人,让他们有信心认为他们可以使用pandas来替换他们零碎复杂的Excel,进行数据操作。

以上是小编为您精心准备的的内容,在的博客、问答、公众号、人物、课程等栏目也有的相关内容,欢迎继续使用右上角搜索按钮进行搜索python
, excel
pandas
python pandas 教程、python操作mysql框架、python pandas、python pandas 安装、python pandas csv,以便于您获取更多的相关知识。

时间: 2024-10-27 18:13:00

用Python的pandas框架操作Excel文件中的数据教程_python的相关文章

试图用java从excel文件中读取数据时出现的问题

问题描述 试图用java从excel文件中读取数据时出现的问题 org.apache.poi.POIXMLException: org.apache.poi.openxml4j.exceptions.InvalidFormatException: OPC Compliance error [M4.1]: there is more than one core properties relationship in the package ! at org.apache.poi.util.Packa

通过vb.net开发的web将一个excel文件中的数据导入到oracle中 出错

问题描述 通过vb.net开发的web将一个excel文件中的数据导入到oracle中又什么别的比较好的办法吗?我试过了:先用FileUpload.SaveAs方法将文件保存在服务器的一个文件夹下在用OleDbDataAdapter.Fill方法将excel读入到dataset最后循环dataset将数据写入oracle出现了在我本地机器上好用,但是在上传到服务器上后能够保存,但是用oledb访问不了,OleDbConnection一open就出现未定义的错误2147467259 解决方案 解决

从Excel文件中查询数据并分组显示

问题描述 如图图中是从Excel文件中读取的数据然后显示在GridView中.我想要的结果是显示卡类型和折扣2列并进行分组显示结果卡类型折扣会员卡1VIP0.6求解决方案... 解决方案 解决方案二:selectf6,f7fromxxxgroupbyf6,f7解决方案三:我这是读取的Excel文件不是读取的数据库另外我这里是Success数据库解决方案四:如果是纯excel,那你自己处理吧,不过excel也可以当做是数据库一样读取access数据库更应该可以用sql了解决方案五:你可以先把Exc

在Python的Flask框架下使用sqlalchemy库的简单教程_python

flask中的sqlalchemy 相比于sqlalchemy封装的更加彻底一些 , 在一些方法上更简单 首先import类库: 在CODE上查看代码片派生到我的代码片 <span style="font-size:18px;">from flask import Flask from flask.ext.sqlalchemy import SQLAlchemy</span>   然后,需要加载 数据库路径 在CODE上查看代码片派生到我的代码片 <spa

Python的Flask框架标配模板引擎Jinja2的使用教程_python

Jinja2需要Python2.4以上的版本. 安装 按照Jinja有多种方式,你可以根据需要选择不同的按照方式. 使用easy_install 或pip: #sudo easy_install Jinja2 #sudo pip install Jinja2 这两个工具可以自动从网站上下载Jinja,并安装到python目录的site-packages目录中. 从tar包安装: # 下载Jinja的安装包 # 解压缩 # sudo python setup.py install 基本API用法

C#创建Excel文件并将数据导出到Excel文件

工具原料: Windows 7,Visual Studio 2010, Microsoft Office 2007 创建解决方案 菜单>新建>项目>Windows窗体应用程序: 添加相关组件: 添加两个DataGridView,一个TextBox,两个按钮 ,如下图: 添加Excel资源: C#创建Excel文件,这里实际上是从资源中提取一个事先创建好的Excel文件,文件提取成功后,使用OleDb方法连接Excel,向Excel文件中写入数据. 先在文件夹中新建一个Excel文件,在S

使用DataStage Java Integration Stage和Java Pack从Excel源文件中提取数据

简介 IBM InfoSphere Information 服务器由一套可帮助企业从遍布多个数据源系统的信息中获取 业务价值的数据集成产品组成.它有助于以某种具有成本效益的方式从多个异构数据源中分析.清理和集成信 息.有了 IBM InfoSphere Information Server,企业能够以较低的成本和风险提高其运营效率. IBM Information Server DataStage 是一个 ETL 产品,可帮助组织提取.转换和加载来自异构数据源的数据. DataStage 可使用

Python使用xlrd模块操作Excel数据导入的方法

  本文实例讲述了Python使用xlrd模块操作Excel数据导入的方法.分享给大家供大家参考.具体分析如下: xlrd是一个基于python的可以读取excel文件的产品.和pyExcelerator相比,xlrd的主要特点在于读的功能比较强大,提供了表单行数.列数.单元格数据类型等pyExcelrator无法提供的详细信息,使得开发人员无须了解表单的具体结构也能对表单中的数据进行正确的分析转换. 但是xlrd仅仅提供了读取excel文件的功能,不能像pyExcelrator那样生成exce

python使用xlrd模块读写Excel文件的方法

  这篇文章主要介绍了python使用xlrd模块读写Excel文件的方法,较为详细的分析了xlrd模块的安装.使用与操作Excel文件的相关技巧,需要的朋友可以参考下 一.安装xlrd模块 到python官网下载http://pypi.python.org/pypi/xlrd模块安装,前提是已经安装了python 环境. 二.使用介绍 1.导入模块 代码如下: import xlrd 2.打开Excel文件读取数据 代码如下: data = xlrd.open_workbook('excelF