RSS 2016研讨会随想:质疑者是正确的吗——深度学习在机器人领域的局限和潜力都在哪里?

导语:RSS(Robotics: Science and Systems,机器人:科学与系统) 是机器人领域的世界顶级学术会议。 John McCormac是伦敦帝国学院戴森机器人实验室(Dyson Robotics Lab at Imperial)的一名博士生,师从Andy Davison教授和Stefan Leutenegger博士。2016年6月,McCormac参加了在密歇根大学召开的RSS 2016大会,他在博客中分享参会的一些心得体会,以下为McCormac博客中的部分编译内容,读者朋友可点此查看其原文

在过去几年里,深度学习技术,在计算机视觉等诸多领域,带来了天翻地覆的变革。在目标识别和检测、场景分类、动作识别等分支,深度学习都有着“惊艳”地成功应用。尽管那边已经“热火朝天”,但在机器人视觉研究这边,深度学习的应用,才刚刚拉开舞台的幕布。

 

目前,深度学习已经开始在机器人领域“牛刀小试”。例如,在视觉引导机器人的抓取和操纵研究上,就有了成功的应用。

图片来源:谷歌深度思维团队Raia Hadsell在RSS 2016报告幻灯片

但即便如此,深度学习,仍然没有发展成为机器人领域的主流方法。这是因为,有许多著名的机器人、人工智能等领域的专家,直言不讳他们的质疑和顾虑,他们不相信深度学习能在不同的机器人应用场景中,得到普及使用,并质疑深度学习驱动下的机器人安全性能。

 

质疑者在哪里?

 

整体来说, 研讨会很有意思。在研讨会快结束的时候,主持人Pieter Abbeel(斯坦福大学副教授)问道,现场有多少的观众,对深度学习在机器人领域的应用,秉持怀疑态度,150~200的观众席中,仅有5~10名观众举手表示质疑。

 

即使身处质疑者的阵营,他们的立场也并非坚定如铁,因为在被问到为啥质疑时,他们表态说,作为机器人研究的一个辅助工具,深度学习还是有用武之地的。

 

质疑者的疑虑,并非空穴来风,这些疑虑主要来自两个方面,一是在特定场景下,机器人的行为难以确保。比如说,自动驾驶机器人,在遇到险情时,是保护车上的主人——司机,还是要保护路上的行人?

 

二是深度学习的可解释性。深度学习在某些领域的应用效果极佳,可是为什么极佳,深度学习的应用者们,目前为止,也未能给出合理的解释。

 

针对第一点疑虑,著名未来学家Kevin Kelly(昵称KK)在《失控》一书中给出了一点解释。KK预言未来的世界,有两个特征:(1) 自然生命体的机械化;(2) 人造生命体的生物化。对于类似与机器人的人造生命体,KK非常乐观地告诉我们,不必担心:作为造物者,我们要对人造生命体负责,让他们遵循机器人三定律就好。(你信KK所言吗?你不疑虑吗?)

 

质疑阵营和拥护阵营之间,并非泾渭分明。时间流逝掉得不仅仅是岁月,还有观念的淡化或转化。下面说的就是一个有关质疑者的故事——Larry Jackel(著名人工智能专家、North C .科技公司主席)曾经参与了一个关于神经网络未来的著名赌局。

 

一场有关神经网络的著名赌局

 

我们知道,卷积神经网络是深度学习最重要的分支之一。“卷积”和“深度”是神经网络互相独立的两个性质。“卷积”指的是前端有卷积层;“深度”指的是除了卷积层之外还有很多层。现在看来,深度学习在很多领域都是风生水起,大放异彩。但这仅仅是“看见贼吃肉,没见贼挨揍”。

 

虽然大部分人的感觉,深度学习是最近几年才迅速崛起的,但深度学习的基础理论——人工神经网络,早在上个世纪八十年代,就有了一定的发展,后期遭遇瓶颈,进入漫长的“冬眠期”。其中卷积神经网络在刚面世时,就受到了很多人的质疑,Vladinmir Vapnik就是众多质疑者的一个。Vapnik是何许人也?此君来头不小。他不仅是一名出色的数学家,而且还是目前应用最广的人工智能模式之一——支持向量机(SVM)之父。

 

那时(1995年),Jackel认为,到2000年,人们能够明确了解人工神经网络能够发挥多大作用。

 

Vapnik并不认可这个观点。他认为,别说1995了,就算到2005年,也就是十年后,任何思维正常的人,都不会知道神经网络有啥用,怎么用。

 

1995年3月,在谁也不能说服谁的情况下,二人决定打赌定输赢。赌注是一顿奢华晚餐。

 

双方在证人面前签字画押,Yann  LeCun是第三方签名人(Yann LeCun ,目前炙手可热的人工智能专家,Facebook人工智能实验室主任,纽约大学数据科学中心创始人,当年由 Jackel招进贝尔实验室)。

 

一开始,Vapnik赢了,因为到了2000年,神经网络的内部工作原理,基本上仍然被神秘所笼罩,研究人员无法明确地判断出,如何让神经网络更好地应用在现实生活之中。

 

但Vapnik猜到了前头,却没有猜到后头。

 

在2005年左右(更确切地说是2006年),加拿大多伦多大学教授、机器学习领域的泰斗Hinton教授和他的学生Salakhutdinov在顶尖学术刊物《科学》上发表了一篇文章,开启了深度学习在学术界和工业界的“拓疆扩土”的浪潮。这篇文章提供了两个核心信息:(1)很多隐层的人工神经网络具有优异的特征学习能力,学习得到的特征对数据有更本质的刻划,从而有利于可视化或分类;(2)深度神经网络在训练上的难度,可以通过“逐层初始化”(Layer-wise pre-training)来有效克服,可在海量数据上展开并行神经网络的参数训练。

 

现在的局面,大家看到了。在很多领域中,深度学习(卷积神经网络)得到非常广泛而深入的应用。如果Jackel已经兑现了自己的赌注,那么现在的Vapnik,似乎应该回请Jackel两顿奢华晚餐,作为补偿。在现实面前,如果Vapnik不固执己见,那么这名先前的质疑者,是时候转变自己的观点了。

 

虽然深度学习有了比较广泛的应用,但质疑并没有结束。

 

比如说,深度学习这项技术虽然很强大,但为啥这么强大?即使是深度学习的领域专家,也不能给出令人信服的理由。也就是说,深度学习的内部工作原理,仍然是云罩雾绕,仍然是个有待破解的谜。

 

因此,也有人说,深度学习压根就不是什么科学嘛,仅仅是一个工程而已。如同那句人工智能的调侃:“有多少人工,就有多少智能”。深度学习的调参,何尝不是一个体力活?

图片来源:Oliver Brock在RSS 2016报告幻灯片(Oliver Brock为德国柏林大学 机器人与生物实验室研究员)

 

如果深度学习内部的机理都弄不清楚,就把这套理论应用在更贴近人们生活中的机器人上,这靠谱吗?安全性又如何保证?人们不能不疑虑重重啊!

 

沉默的大多数

 

在这次研讨会上,表面上看来,现场表示质疑的人,比例较小(5/150左右),但实际上,这个比例可能要大得多,因为有些观众即使身处“质疑者”阵营,也不会轻易公开发声。所以,不论是问卷调查也好,还是举手表决也罢,不要认为,在这类场景下,就一定能够把大多数人的真实意思表达出来。

 

之所以这么说,是有其理论依据的。早在1974年,德国社会学家伊丽莎白•诺尔-诺依曼(Elisabeth Noelle-Neumann)就在其名著《沉默的螺旋》(The Spiral Of Silence)中 ,就表达了类似的观点:大多数个人会力图避免由于单独持有某些态度和信念而产生的孤立。因为害怕孤立,他便不太愿意把自己的观点说出来。因此,当发觉自己的某一观点无人或很少有人理会(有时会有群起而攻之的遭遇),即使自己赞同它,也会保持沉默。意见一方的沉默,造成另一方意见的增势,如此循环往复,便形成了一方的声音越来越强大,从而形成“沉默的大多数”,而另一方越来越沉默下去的螺旋发展过程。

 

质疑还在继续,他们是正确的吗?让时间给出答案吧。

 

译者介绍:张玉宏,著有《品味大数据》一书。

 

时间: 2024-11-08 21:59:41

RSS 2016研讨会随想:质疑者是正确的吗——深度学习在机器人领域的局限和潜力都在哪里?的相关文章

2016这一年,深度学习开始主宰互联网

雷锋网按:2016 即将画上句号,当我们回顾这一年的科技进展时,雷锋网很难不联想到一个词--深度学习.当它从研究室中脱胎而出,并成为今年的当红热词,实际上我们已经意识到深度学习的来临.从 AlphaGo 到 Google Translate,雷锋网也做过不少覆盖和解析.Cade Metz 为 Wired 撰文回顾了与深度学习同行的这一年,雷锋网(公众号:雷锋网)编译,未经许可不得转载. 在澳大利亚西海岸,Amanda Hodgson 正在操控无人机飞跃海面,无人机可以帮助他们在水面上拍摄照片,利

2016深度学习统治人工智能?深度学习十大框架

2015 年结束了,是时候看看 2016 年的技术趋势,尤其是关于深度学习方面.新智元在 2015 年底发过一篇文章<深度学习会让机器学习工程师失业吗?>,引起很大的反响.的确,过去一年的时间里,深度学习正在改变越来越多的人工智能领域.Google DeepMind 工程师 Jack Rae 预测说,过去被视为对于中型到大型数据集来说最佳的预测算法的那些模型(比如说提升决策树(Boosted Decision Trees)和随机森林)将会变得无人问津. 深度学习,或者更宽泛地说--使用联结主义

图说2016深度学习十大指数级增长

1. 图像识别准确率的指数级增长 似乎一切都是从 2015年的 ImageNet 挑战赛开始的,当年在图像识别准确率上,机器首次超过了人类,被认为是一个里程碑式的突破. 图:ILSVRC top-5 错误率 2010年算法的图像识别错误率至少在25%左右,但到2015年,计算机图像识别错误率已经低于人类(人类水平大概是4%左右).2015年是0.03567,也就是3.5%.2016年,ImageNet 竞赛,图像识别错误率进一步下降,错误率今年的最好成绩为:平均错误率0.02991,也就是2.9

吴恩达 NIPS 2016:利用深度学习开发人工智能应用的基本要点(含唯一的中文版PPT)

雷锋网按:为了方便读者学习和收藏,雷锋网(公众号:雷锋网)特地把吴恩达教授在NIPS 2016大会中的PPT做为中文版,由三川和亚峰联合编译并制作. 今日,在第 30 届神经信息处理系统大会(NIPS 2016)中,百度首席科学家吴恩达教授发表演讲:<利用深度学习开发人工智能应用的基本要点(Nuts and Bolts of Building Applications using Deep Learning)>. 此外,吴恩达教授曾在今年 9 月 24/25 日也发表过同为<Nuts a

深度学习在2016年都有哪些主要研究进展?(附开源平台地址)| 盘点

在过去的几年时间里,深度学习(Deep Learning)一直都是机器学习社区的核心主题, 2016年也不例外.  研究人员长久以来亟待解决的一个主要挑战就是无监督学习(Unsupervised Learning).Tryolabs 认为,2016 年对于这一领域来说是取得伟大突破的一年,主要原因是出现了大量的基于生成模型(Generative Models)的研究.此外,雷锋网会介绍自然语言处理(NLP)技术在 2016 年所取得的创新,这些技术会是实现该目标的关键.除了回顾那些推动该领域快速

CNCC 2016|清华大学张钹院士起底: 后深度学习时代的人工智能

雷锋网(公众号:雷锋网)按:本文根据张钹院士近日在 CNCC 2016 上所做的大会特邀报告<<人工智能未来展望,后深度学习时代>>编辑整理而来,在未改变原意的基础上略作了删减. 张钹:CCF会士,2014CCF终身成就奖获得者,中国科学院院士,计算机专家,清华大学类脑计算研究中心学术委员会主任.曾任信息学院学术委员会主任物联网物联网,智能技术与系统国家重点实验室主任,中国自动化学会智能控制专业委员会主任,计算机学报副主宾,2011年德国汉堡大学授予自然科学名誉博士,2016年获微

从NNVM看2016年深度学习框架发展趋势

雷锋网(公众号:雷锋网)按:本文作者潘汀,合肥工业大学计算机专业大三本科生,中科院深圳先进院集成所MMLAB访问学生.原ACM-ICPC算法竞赛选手,2015年获CCPC铜牌.2015年初开始研究机器学习,研究兴趣集中于对深度学习理论.应用(CV&NLP)及系统架构设计的综合探索.关于深度学习在面部情感分析方面应用的论文被<自动化学报>录用. | 虚拟框架杀入 从发现问题到解决问题 半年前的这时候,暑假,我在SIAT MMLAB实习.看着同事一会儿跑Torch,一会儿跑MXNet,一会

朋克学术大牛上演“换头术”,原来深度学习还能这样玩!(附论文下载)|SIGGRAPH ASIA 2016

电影及视频游戏行业的新兴及发展,无疑是计算机图像研究领域的一剂催化剂.SIGGRAPH ASIA 2016 的学术主席,伦敦学院教授 Niloy Mitra 在开幕式上表示,「计算机图像技术正在对实体产业产生影响,比如为产品视觉化及图像优化提供工具.这项技术源于视觉效果及游戏产业的计算机图像需求,并为数学.物理.艺术及计算机科学提供一座融合的桥梁.」 而作为 A 类会议的 SIGGNRAPH ASIA 2016,又怎能错过这一领域的学术交流及分享?今天早上的主题分享为「geometric dee

盘点2016年人工智能与深度学习领域的十大收购

自从谷歌2014年花费4亿英镑收购了当时默默无闻的剑桥大学初创团队Deep Mind后,科技公司就一直热衷于收购AI科技公司. 企业软件制造商希望通过收购AI科技公司来获得什么呢?他们无非是想使其产品或设备拥有智能预测的能力,来帮助用户更加方便快捷地使用. 社交媒体和互联网公司对图像和语音的识别技术非常感兴趣,这些可以提高用户的参与度.而当今一流的高科技公司则想制造一个智能私人助理来统一管理它们. 无论近期的抢购风潮是否只是资本泡沫,AI时代都已经到来,在此,我们为你盘点2016年至今AI领域的