生成对抗网络(GAN)是一种强大的生成模型,但是自从2014年Ian Goodfellow提出以来,GAN就存在训练不稳定的问题.最近提出的 Wasserstein GAN(WGAN)在训练稳定性上有极大的进步,但是在某些设定下仍存在生成低质量的样本,或者不能收敛等问题. 近日,蒙特利尔大学的研究者们在WGAN的训练上又有了新的进展,他们将论文<Improved Training of Wasserstein GANs>发布在了arXiv上.研究者们发现失败的案例通常是由在WGAN中使用权重剪
雷锋网(公众号:雷锋网) AI 科技评论按:计算机视觉盛会 CVPR 2017已经结束了,雷锋网 AI 科技评论带来的多篇大会现场演讲及收录论文的报道相信也让读者们对今年的 CVPR 有了一些直观的感受. 论文的故事还在继续 相对于 CVPR 2017收录的共783篇论文,即便雷锋网 AI 科技评论近期挑选报道的获奖论文.业界大公司论文等等是具有一定特色和代表性的,也仍然只是沧海一粟,其余的收录论文中仍有很大的价值等待我们去挖掘,生物医学图像.3D视觉.运动追踪.场景理解.视频分析等方面都有许多