神经网络之父 Geoffrey Hinton:深度学习的下一个飞跃是什么?

Geoffrey Hinton,图源网络

雷锋网按:
Geoffrey Hinton
被尊称为“神经网络之父”,他将神经网络带入到研究与应用的热潮,将“深度学习”从边缘课题变成了谷歌等互联网巨头仰赖的核心技术,并将
HintonBack Propagation(反向传播)算法应用到神经网络与深度学习,还提出了“Dark Knowledge”概念。

Geoffrey
Hinton 曾获得爱丁堡大学人工智能的博士学位,并且为多伦多大学的特聘教授。在 2012 年,Hinton
还获得了加拿大基廉奖(Killam Prizes,有“加拿大诺贝尔奖”之称的国家最高科学奖)。2013 年,Hinton 加入谷歌并带领一个
AI 团队,目前正进行着谷歌大脑的项目。

近日,外媒 gigaom 采访了这位大牛,问题主要和人工智能相关,大家可以和雷锋网一起看看他是怎么回答的:

Q:您被称作“神经网络之父”,那您认为在有生之年“真正的”人工智能会出现吗?

A:这取决于你对“真正的”人工智能定义是什么。如果你是说在自然语言、感知、推理、运动等方面都能和人类水平相当的人工智能体,我觉得我大概是看不到了。不过,五年后会发生什么我们很难预测,所以我不去排除这样的可能性。在十年前,很多
AI
工作者认为用神经网络完成机器翻译是不可能的,因为这需要让神经网络从原始训练数据中获取所有语言知识。但在今天,这就是机器翻译使用的方法,而且是最好的。神经网络翻译显著地缩小了机器和人工之间翻译水平的差距。

Q :如果真正的人工智能出现,您有什么担心的吗?

A:说实话,我不太担心现在大家经常讨论的那些问题,就是说变坏的机器人会代替人类接管世界。我更担心的是诸如希特勒、墨索里尼这样的人在科技的帮助下可能会做的事儿。如果这些人拥有智能机器人,后果不堪设想。我认为现在最迫切的一件事就是对
AI 的军事化制定相关的国际政策或者协议。

 Q:您认为未来人工智能对经济和劳动力会有什么影响呢?利大于弊还是弊大于利?

A:我们可以看到,如今 ATM 机等机器已经帮助人们减少了大量繁重的工作,提高了生产效率。我想应该很少有人会觉得这些机器不应该被引入。在一个相对公平公正的政治制度下,能够提高生产力的技术肯定会受到公众的欢迎,因为这会帮助每个人的生活变得更好。技术本身不是问题,问题是社会制度能不能保障每个人都受益。

 Q:您认为深度学习下一个大的飞跃会是什么?

A:目前,我们已经在一些近半个世纪里都没有解决的难题上获得了前所未有的进展。语音识别、图像识别技术都已经获得了巨大的进步,并且会变得更好。我相信,不久的未来计算机就能理解视频里讲了些什么。

此外,最近神经网络也开始接管机器翻译。我们几乎每周都能看到深度神经网络在一些有商业化价值的新领域获得成功。二十几年前,深度学习技术才出现在人们视野中,现在已经取得了非常惊人的成果。更出色的神经元类型和架构使得更深层次的网络上可以进行更多,更好的学习任务。深度学习已经吸引了大量的人才和资金,我想这些还会一直持续下去。

值得关注的一点是,我们应该付出更多的努力让神经网络可以真正理解文档的内容,其中包括开发新类型的临时存储器。这个话题现在很热门。

不过,现在我们还有一个问题没有解决。那就是如何从少量的数据中生成良好的神经网络,我觉得这可能需要彻底改变现在使用的神经元类型。

在进行深度学习的应用过程中,我们会得到一些宝贵的经验教训,这给进一步研究提供了新的视角,比如帮我们更好地理解真正的神经元是如何学习任务的。我认为这对深度学习的未来应用会产生巨大的影响。

本文作者:刘子榆

本文转自雷锋网禁止二次转载,原文链接

时间: 2024-09-26 20:35:40

神经网络之父 Geoffrey Hinton:深度学习的下一个飞跃是什么?的相关文章

Keras之父:大多数深度学习论文都是垃圾,炒作AI危害很大

Keras之父.谷歌大脑人工智能和深度学习研究员François Chollet最新撰写了一本深度学习Python教程实战书籍<Python深度学习>,书中介绍了深度学习使用Python语言和强大Keras库,详实新颖. 近日,François Chollet接受了采访,就"深度学习到底是什么"."Python为何如此广受欢迎"."目前深度学习面临的主要挑战"等议题进行了回答.他认为,目前很多深度学习领域的论文都是无意义的,因为这些研

端到端GPU性能优化在深度学习场景下的应用实践

摘要:在2017杭州云栖大会机器学习平台PAI专场上,阿里巴巴高级算法专家杨军结合具体案例分享了端到端GPU性能优化在深度学习场景下的应用实践.   本文内容根据嘉宾演讲视频以及PPT整理而成.   目前深度学习和GPU已经成为了人工智能的基础,一软一硬的结合能够帮助我们实现图像识别.语音识别以及视频的处理,那么如何优化深度学习框架与GPU资源也是机器学习平台的一个研究方向.   本次分享主要分为以下5个部分: 1.         背景介绍 2.         优化思考 3.        

人脸检测发展:从VJ到深度学习(下)

雷锋网按:本文作者邬书哲, 中科院计算所智能信息处理重点实验室VIPL课题组博士生,研究方向:目标检测,尤其关注基于深度学习的目标检测方法. |深度学习给目标检测带来的变革      人脸检测作为一种特定类型目标的检测任务,一方面具有其自己鲜明的特点,需要考虑人脸这一目标的特殊性,另一方面其也和其它类型目标的检测任务具有一定的共性,能够直接借鉴在通用目标检测方法上的研究经验.     目标检测任务作为一个分类问题,其不仅受益于计算机视觉领域相关技术的不断发展,在机器学习领域的研究进展同样也对目标

一文读懂深度学习框架下的目标检测(附数据集)

从简单的图像分类到3D位置估算,在机器视觉领域里从来都不乏有趣的问题.其中我们最感兴趣的问题之一就是目标检测. 如同其他的机器视觉问题一样,目标检测目前为止还没有公认最好的解决方法.在了解目标检测之前,让我们先快速地了解一下这个领域里普遍存在的一些问题. 目标检测 vs 其他计算机视觉问题图像分类 在计算机视觉领域中,最为人所知的问题便是图像分类问题. 图像分类是把一幅图片分成多种类别中的一类.  ImageNet是在学术界使用的最受欢迎的数据集之一,它由数百万个已分类图像组成,部分数据用于Im

ACL 第一天:Tutorial钟爱深度学习,唯一一个workshop关注女性群体| ACL 2017

雷锋网AI科技评论按:计算机语言学和自然语言处理最顶尖的会议之一ACL 将于2017年7月30日至8月4日在加拿大温哥华举行.雷锋网(公众号:雷锋网) AI 科技评论将赴前线带来一手报道,并对论文及大会概况进行梳理. 今天是预热 tutorial 环节,也是 ACL 会议延续至今的传统,旨在帮助研究领域的新手们了解计算机语言学与自然语言处理的核心技术,同时也会介绍目前这些分领域的一些前沿内容. 今年的 Tutorial 主席是科罗拉多大学的 Jordan Boyd-Grabe 和柏林洪堡大学的

目标检测101:一文带你读懂深度学习框架下的目标检测

从简单的图像分类到3D位置估算,在机器视觉领域里从来都不乏有趣的问题.其中我们最感兴趣的问题之一就是目标检测. 如同其他的机器视觉问题一样,目标检测目前为止还没有公认最好的解决方法.在了解目标检测之前,让我们先快速地了解一下这个领域里普遍存在的一些问题. 目标检测 vs 其他计算机视觉问题图像分类 在计算机视觉领域中,最为人所知的问题便是图像分类问题. 图像分类是把一幅图片分成多种类别中的一类. ImageNet是在学术界使用的最受欢迎的数据集之一,它由数百万个已分类图像组成,部分数据用于Ima

【玩转数据系列十】利用阿里云机器学习在深度学习框架下实现智能图片分类

伴随着今日阿里云机器学习PAI在云栖大会的重磅发布,快来感受下人工智能的魅力. 一.背景 随着互联网的发展,产生了大量的图片以及语音数据,如何对这部分非结构化数据行之有效的利用起来,一直是困扰数据挖掘工程师的一到难题.首先,解决非结构化数据常常要使用深度学习算法,上手门槛高.其次,对于这部分数据的处理,往往需要依赖GPU计算引擎,计算资源代价大.本文将介绍一种利用深度学习实现的图片识别案例,这种功能可以服用到图片的检黄.人脸识别.物体检测等各个领域. 下面尝试通过阿里云机器学习平台产品,利用深度

从“神经网络之父”到“人工智能教父”|Geoffrey Hinton的传奇人生 那才叫精彩

CNET科技行者 8月29日 北京消息 人工智能领域有三大奠基人,分别是Geoffrey Hinton.Yann LeCun与Yoshua Bengio.本文主要围绕"神经网络之父"Geoffrey Hinton. Geoffrey Hinton,被称为"神经网络之父"."深度学习鼻祖",他曾获得爱丁堡大学人工智能的博士学位,并且为多伦多大学的特聘教授.在2012年,Hinton还获得了加拿大基廉奖(Killam Prizes,有"加拿

我所推荐的深度学习学习路径

深度学习最近为什么这么火 外行所见的是2016年AlphaGo 4比1 战胜李世石,掀起了一波AI热潮,DeepMind背后所用的深度学习一时间火得不得了.其实在内行看来,AlphaGo对阵李世石的结果是毫无悬念的,真正的突破在几年前就发生了.2012年,Gefferey Hinton的学生Alex使用一个特别构造的深度神经网络(后来就叫AlexNet),在图像识别的专业比赛ImageNet中,得到了远超之前最好成绩的结果,那个时候,整个人工智能领域就已经明白,深度学习的革命已经到来了.果然,之