Java8 HashMap的实现原理分析_java

前言:Java8之后新增挺多新东西,在网上找了些相关资料,关于HashMap在自己被血虐之后痛定思痛决定整理一下相关知识方便自己看。图和有些内容参考的这个文章:http://www.jb51.net/article/80446.htm

HashMap的存储结构如图:一个桶(bucket)上的节点多于8个则存储结构是红黑树,小于8个是单向链表。

1:HashMap的一些属性

public class HashMap<k,v> extends AbstractMap<k,v> implements Map<k,v>, Cloneable, Serializable {
private static final long serialVersionUID = 362498820763181265L;
// 默认的初始容量是16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
// 最大容量
static final int MAXIMUM_CAPACITY = 1 << 30;
// 默认的填充因子(以前的版本也有叫加载因子的)
static final float DEFAULT_LOAD_FACTOR = 0.75f;
// 这是一个阈值,当桶(bucket)上的链表数大于这个值时会转成红黑树,put方法的代码里有用到
static final int TREEIFY_THRESHOLD = 8;
// 也是阈值同上一个相反,当桶(bucket)上的链表数小于这个值时树转链表
static final int UNTREEIFY_THRESHOLD = 6;
// 看源码注释里说是:树的最小的容量,至少是 4 x TREEIFY_THRESHOLD = 32 然后为了避免(resizing 和 treeification thresholds) 设置成64
static final int MIN_TREEIFY_CAPACITY = 64;
// 存储元素的数组,总是2的倍数
transient Node<k,v>[] table;
transient Set<map.entry<k,v>> entrySet;
// 存放元素的个数,注意这个不等于数组的长度。
transient int size;
// 每次扩容和更改map结构的计数器
transient int modCount;
// 临界值 当实际大小(容量*填充因子)超过临界值时,会进行扩容
int threshold;
// 填充因子
final float loadFactor;

2:HashMap的构造方法

// 指定初始容量和填充因子的构造方法
public HashMap(int initialCapacity, float loadFactor) {
// 指定的初始容量非负
if (initialCapacity < 0)
throw new IllegalArgumentException(Illegal initial capacity: +
initialCapacity);
// 如果指定的初始容量大于最大容量,置为最大容量
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
// 填充比为正
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException(Illegal load factor: +
loadFactor);
this.loadFactor = loadFactor;
// 指定容量后,tableSizeFor方法计算出临界值,put数据的时候如果超出该值就会扩容,该值肯定也是2的倍数
// 指定的初始容量没有保存下来,只用来生成了一个临界值
this.threshold = tableSizeFor(initialCapacity);
}
// 该方法保证总是返回大于cap并且是2的倍数的值,比如传入999 返回1024
static final int tableSizeFor(int cap) {
int n = cap - 1;
// 向右做无符号位移
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
// 三目运算符的嵌套
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
//构造函数2
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
//构造函数3
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}

3:get和put的时候确定元素在数组中的位置

static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

要确定位置

第一步:首先是要计算key的hash码,是一个int类型数字。那后面的 h >>> 16 源码注释的说法是:为了避免hash碰撞(hash collisons)将高位分散到低位上了,这是综合考虑了速度,性能等各方面因素之后做出的。

第二步: h是hash码,length是上面Node[]数组的长度,做与运算 h & (length-1)。由于length是2的倍数-1后它的二进制码都是1而1与上其他数的结果可能是0也可能是1,这样保证运算后的均匀性。也就是hash方法保证了结果的均匀性,这点非常重要,会极大的影响HashMap的put和get性能。看下图对比:

图3.1是非对称的hash结果

图3.2是均衡的hash结果

这两个图的数据不是很多,如果链表长度超过8个会转成红黑树。那个时候看着会更明显,jdk8之前一直是链表,链表查询的复杂度是O(n)而红黑树由于其自身的特点,查询的复杂度是O(log(n))。如果hash的结果不均匀会极大影响操作的复杂度。相关的知识这里有一个<a href=”http://blog.chinaunix.net/uid-26575352-id-3061918.html”>红黑树基础知识博客 </a>网上还有个例子来验证:自定义了一个对象来做key,调整hashCode()方法来看put值得时间

public class MutableKeyTest {
public static void main(String args[]){
class MyKey {
Integer i;
public void setI(Integer i) {
this.i = i;
}
public MyKey(Integer i) {
this.i = i;
}
@Override
public int hashCode() {
// 如果返回1
// return 1
return i;
}
// object作为key存map里,必须实现equals方法
@Override
public boolean equals(Object obj) {
if (obj instanceof MyKey) {
return i.equals(((MyKey)obj).i);
} else {
return false;
}
}
}
// 我机器配置不高,25000的话正常情况27毫秒,可以用2500万试试,如果hashCode()方法返回1的话,250万就卡死
Map<MyKey,String> map = new HashMap<>(25000,1);
Date begin = new Date();
for (int i = 0; i < 20000; i++){
map.put(new MyKey(i), "test " + i);
}
Date end = new Date();
System.out.println("时间(ms) " + (end.getTime() - begin.getTime()));

4:get方法

public V get(Object key) {
Node<k,v> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
final Node<k,v> getNode(int hash, Object key) {
Node<k,v>[] tab; Node<k,v> first, e; int n; K k;
// hash & (length-1)得到红黑树的树根位置或者是链表的表头
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
if ((e = first.next) != null) {
// 如果是树,遍历红黑树复杂度是O(log(n)),得到节点值
if (first instanceof TreeNode)
return ((TreeNode<k,v>)first).getTreeNode(hash, key);
// else是链表结构
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}

5 :put方法,put的时候根据 h & (length – 1) 定位到那个桶然后看是红黑树还是链表再putVal

public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<k,v>[] tab; Node<k,v> p; int n, i;
// 如果tab为空或长度为0,则分配内存resize()
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
// (n - 1) & hash找到put位置,如果为空,则直接put
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node<k,v> e; K k;
// 第一节节点hash值同,且key值与插入key相同
if (p.hash == hash &&((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode)
// 红黑树的put方法比较复杂,putVal之后还要遍历整个树,必要的时候修改值来保证红黑树的特点
e = ((TreeNode<k,v>)p).putTreeVal(this, tab, hash, key, value);
else {
// 链表
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
// e为空,表示已到表尾也没有找到key值相同节点,则新建节点
p.next = newNode(hash, key, value, null);
// 新增节点后如果节点个数到达阈值,则将链表转换为红黑树
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
// 容许空key空value
if (e.hash == hash &&((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
// 更新hash值和key值均相同的节点Value值
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}

6:resize方法

final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
// 这一句比较重要,可以看出每次扩容是2倍
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) {
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}

以上所述是小编给大家介绍的Java8 HashMap的实现原理分析的相关知识,希望对大家有所帮助!

以上是小编为您精心准备的的内容,在的博客、问答、公众号、人物、课程等栏目也有的相关内容,欢迎继续使用右上角搜索按钮进行搜索hashmap的实现原理
hashmap实现原理分析、java hashmap实现原理、hashmap的实现原理、hashmap底层实现原理、hashmap 实现原理,以便于您获取更多的相关知识。

时间: 2024-12-21 16:27:12

Java8 HashMap的实现原理分析_java的相关文章

java中HashMap的原理分析_java

我们先来看这样的一道面试题: 在 HashMap 中存放的一系列键值对,其中键为某个我们自定义的类型.放入 HashMap 后,我们在外部把某一个 key 的属性进行更改,然后我们再用这个 key 从 HashMap 里取出元素,这时候 HashMap 会返回什么? 文中已给出示例代码与答案,但关于HashMap的原理没有做出解释. 1. 特性 我们可以用任何类作为HashMap的key,但是对于这些类应该有什么限制条件呢?且看下面的代码: public class Person { priva

Java HashMap的工作原理_java

大部分Java开发者都在使用Map,特别是HashMap.HashMap是一种简单但强大的方式去存储和获取数据.但有多少开发者知道HashMap内部如何工作呢?几天前,我阅读了java.util.HashMap的大量源代码(包括Java 7 和Java 8),来深入理解这个基础的数据结构.在这篇文章中,我会解释java.util.HashMap的实现,描述Java 8实现中添加的新特性,并讨论性能.内存以及使用HashMap时的一些已知问题. 内部存储 Java HashMap类实现了Map<K

java HashMap 的工作原理详解_java

HashMap的工作原理是近年来常见的Java面试题.几乎每个Java程序员都知道HashMap,都知道哪里要用HashMap,知道Hashtable和HashMap之间的区别,那么为何这道面试题如此特殊呢?是因为这道题考察的深度很深.这题经常出现在高级或中高级面试中.投资银行更喜欢问这个问题,甚至会要求你实现HashMap来考察你的编程能力.ConcurrentHashMap和其它同步集合的引入让这道题变得更加复杂.让我们开始探索的旅程吧! 先来些简单的问题 "你用过HashMap吗?&quo

ToyBricks简介以及原理分析

ToyBricks背景 我始终认为,在高内聚,低耦合的原则下,进行组件化,模块化,插件化都是移动应用开发的趋势. 为什么这么说呢?下面我们举个栗子:大家都知道,以前Android应用开发中,可以使用HttpClient或者HttpUrlConnection来进行http访问.这里假设有一个耦合严重,但代码量巨大的项目,使用了基于HttpClient封装的loopj/android-async-http来进行http访问.但是,后来,Google明确支持使用HttpUrlConnection.此时

ASP组件上传的三种机制和实现原理分析

上传 ASP 组件 FILE对象 当前,基于浏览器/服务器模式的应用比较流行.当用户需要将文件传输到服务器上时,常用方法之一是运行FTP服务器并将每个用户的FTP默认目录设为用户的Web主目录,这样用户就能运行FTP客户程序并上传文件到指定的 Web目录.这就要求用户必须懂得如何使用FTP客户程序.因此,这种解决方案仅对熟悉FTP且富有经验的用户来说是可行的. 如果我们能把文件上传功能与Web集成,使用户仅用Web浏览器就能完成上传任务,这对于他们来说将是非常方便的.但是,一直以来,由于File

搜索引擎判断网站是否作弊的原理分析(三)

广州SEO陈永继续为大家讲解搜索引擎判断网站如何判断网站是否作弊的原理,上节讲解完TrustRank算法,这一节将详细讲解BadRank算法. BadRank据传是Google采用的反链接作弊算法.它是一种典型的不信任传播模型,即首先构建作弊网页集合,之后利用链接关系来讲这种不信任分值传递到其他网页. BadRank包含的基本假设是:如果一个网页将其链接指向作弊页面,则这个网页也很可能是作弊网页:而如果一个网页被作弊网页指向,则不能说明这个网页是有问题的,因为作弊网页也经常将其链接指向一些知名网

搜索引擎判断网站是否作弊的原理分析(二)

承接搜索引擎判断网站是否作弊的原理分析(一) 广州SEO陈永继续为大家分析信任传播模型.不信任传播模型及异常发现模型3个代表算法,它们分别是TrustRank算法.BadRank算法和SpamRank算法. 我们先详细介绍TrustRank算法 TrustRank算法属于信任传播模型,基本遵循信任传播模型的流程,即算法流程如下两个步骤组成. 步骤一:确定值得信任的网页集合 TrustRank算法需要靠人工审核来判断某个网页应该被放入网页集合,考虑到人工审核工作量大,所以提出了两种初选信任网页集合

IOS开发:Cocos2d触摸分发原理分析

  触摸是iOS程序的精髓所在,良好的触摸体验能让iOS程序得到非常好的效果,例如Clear.鉴于同学们只会用cocos2d的 CCTouchDispatcher 的 api 但并不知道工作原理,但了解触摸分发的过程是极为重要的.毕竟涉及到权限.两套协议等的各种分发. 本文以cocos2d-iphone源代码为讲解.cocos2d-x 于此类似,就不过多赘述了. 零.cocoaTouch的触摸 在讲解cocos2d触摸协议之前,我觉得我有必要提一下CocoaTouch那四个方法.毕竟cocos2

Photoshop图层与色彩原理分析

  PS入门教程 Photoshop图层与色彩原理分析   教程结束,以上就是Photoshop图层与色彩原理分析,希望大家看完这篇教程之后能有一定的帮助! 分类: PS入门教程