【Spark Summit East 2017】使用机器学习注释器和大规模深度学习本体进行语义自然语言理解

本讲义出自David Talby在Spark Summit East 2017上的演讲,主要介绍了一个通过自由文本格式的病人记录给出临床诊断推理和实时的参考意见的端到端系统,该系统的架构是构建在Kafka与Spark Streaming之上的,该系统可以实时地对于数据进行获取和加工,并使用Spark & MLLib进行建模,并通过Elasticsearch使得用户可以低延迟地对于结果进行访问。

时间: 2024-10-23 15:03:59

【Spark Summit East 2017】使用机器学习注释器和大规模深度学习本体进行语义自然语言理解的相关文章

【Spark Summit East 2017】可扩展性机器学习的特征哈希

本讲义出自Nick Pentreath在Spark Summit East 2017上的演讲,主要介绍了特征哈希是用于处理高维特性的一个功能强大的机器学习技术,特征哈希快速.简单.并且节约内存,而且适合在线学习场景,演讲中分享了特征哈希的基本功能,以及如何使用特征哈希在机器学习中的所有功能类型,并介绍了一个在Spark ML管道中使用的更加灵活和强大的转化器.

【Spark Summit East 2017】大数据赋能机器学习

本讲义出自Jiao Wang与Yiheng Wang在Spark Summit East 2017上的演讲,在今天的互联网应用和新兴智能系统中,人工智能扮演着非常重要的角色,这驱动着需求的扩展以及分布式大数据分析能力与深度学习的能力的提升.在演讲中Jiao Wang与Yiheng Wang分享了Intel以及用户使用开源的Apache Spark分布式深度学习库BigDL构建的大数据机器学习应用.

【Spark Summit East 2017】Spark 2.0机器学习大规模实践经验

本讲义出自Berni Schiefer在Spark Summit East 2017上的演讲,主要介绍了关于Spark 2.0进行大规模机器学习的实际经验,而Berni Schiefer所使用的测试平台不同于典型的Hadoop集群而是为了实现更高的性能而采用了全新的集群设计,使用更多的核心.RAM以及最新的SSD以及100GbE.

【Spark Summit East 2017】使用Spark进行带有高维度标签的机器学习

本讲义出自Stefan Panayotov与Michael Zargham 在Spark Summit East 2017上的演讲,主要介绍了在Stefan Panayotov和团队使用Spark进行带有高维度标签的机器学习的过程中使用到的工具,遇到的障碍以及围绕使用Databricks尝试构建用于预测不同电视节目的收视率以及人口统计数据的客户机器学习模型所做的工作.

【Spark Summit East 2017】Intel与Spark共同助推机器学习与深度学习

本讲义出自Ziya Ma在Spark Summit East 2017上的演讲,主要介绍了人工智能对于目前各个行业的深刻变革并将继续释放大量的能量,并且讲述了人工智能目前需要更进一步提升的需求点,并且介绍了应对人工智能的需求,Intel所研发的BigDL大数据分析框架. BigDL特性与CAFEE以及TORCH相似,对于用户和开发者而言,BigDL非常易于使用,并且所需成本比较低,而且能够使得深度学习在大数据平台上易于扩展,而且能够在单点上具有较高的性能.

【Spark Summit East 2017】将Apache Spark MLlib扩展至十亿级别的参数

本讲义出自Yanbo Liang在Spark Summit East 2017上的演讲,主要介绍了为了应对像广告点击率预测和神经网络这样的应用程序需要从大量的数据中获取数十亿参数的挑战而研发的MLlib自由向量L-BFGS,它能解决Spark SQL框架中训练集经常产生的数十亿参数问题,演讲中展示了通过自由向量L-BFGS进行逻辑回归来满足真实世界的数据集和需求,并分享了如何将这种方法用于其他的机器学习算法.

【Spark Summit East 2017】R与Spark:如何使用RStudio的 Sparklyr和H2O的 Rsparkling分析数据

本讲义出自Nathan Stephens在Spark Summit East 2017上的演讲,Sparklyr是一个让你在Spark中进行数据分析就像在R开发环境下进行数据分析的R语言包,Sparklyr 支持处理数据帧对象的常用工具dplyr的完整后端,你可以使用dplyr将R代码翻译成Spark SQL,Sparklyr还支持MLlib,所以你可以在分布式数据集上运行分类器以及回归.聚类.决策树等机器学习算法,讲义中演示了如何使用Sparklyr和Rsparkling分析数据.

【Spark Summit East 2017】基于Spark构建的Netflix推荐ML Pipeline

本讲义出自Tsai在Spark Summit East 2017上的演讲,主要介绍了Netflix如何使用Apache Spark作为分布式计算框架以及机器学习技术来构建自己的算法来为8000万以上的用户进行个性化推荐,并介绍了在面对Netflix量级的用户带来的挑战中使用的技术和遇到的陷阱.

【Spark Summit East 2017】使用基于Spark的超级计算机压缩软件开发周期

本讲义出自Anthony DiBiase在Spark Summit East 2017上的演讲,主要分享了如何为了大规模地部署服务压缩软件开发周期,并分享了应对自动化决策和模型的复杂性和基于Spark 的机器学习解决方案,演讲中还对于Cray超级计算机进行了介绍.