链接:
http://codeforces.com/problemset/problem/233/B
题目:
B. Non-square Equation
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output
Let's consider equation:
x2+s(x)·x-n=0,
where x,n are positive integers, s(x) is the function, equal to the sum of digits of number x in the decimal number system.
You are given an integer n, find the smallest positive integer root of equation x, or else determine that there are no such roots.
Input
A single line contains integer n (1≤n≤1018) — the equation parameter.
Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use cin, cout streams or the %I64dspecifier.
Output
更多精彩内容:http://www.bianceng.cnhttp://www.bianceng.cn/Programming/sjjg/
Print -1, if the equation doesn't have integer positive roots. Otherwise print such smallest integer x (x>0), that the equation given in the statement holds.
Sample test(s)
input
2
output
1
input
110
output
10
input
4
output
-1
Note
In the first test case x=1 is the minimum root. As s(1)=1 and 12+1·1-2=0.
In the second test case x=10 is the minimum root. As s(10)=1+0=1 and 102+1·10-110=0.
In the third test case the equation has no roots.
分析与总结:
之前很少做数学题,所以一看到就想用二分法做,但是一直WA在test 5,后来经提醒可以将公式变形,瞬间明朗。
把公式x2+s(x)·x-n=0, 进行变形:
S(x) = n/x - x。
可大致估计S(x)的范围在1~100之间, 然后枚举S(x)的值,根据S(x)的值和方程S(x) = n/x - x,解出x = sqrt( S(x)^2/4 + n ).
然后把x代入原公式x2+s(x)·x-n=0 看是否符合。
代码:
#include<iostream> #include<cstdio> #include<cmath> using namespace std; typedef long long int64; int64 n, sx; int64 digitSum(int64 n){ int64 sum=0; while(n){ sum += n%10; n/=10; } return sum; } int main(){ while(cin >> n){ int64 x=1, end=1e8, ans=-1; for(int64 i=1; i<=100; ++i){ int64 tmp = i*i/4+n; x = sqrt(tmp)-i/2; sx = digitSum(x); if(x*x+sx*x-n==0){ ans=x; break; } } cout << ans << endl; } return 0; }
作者:csdn博客 shuangde800
以上是小编为您精心准备的的内容,在的博客、问答、公众号、人物、课程等栏目也有的相关内容,欢迎继续使用右上角搜索按钮进行搜索int
, input
, integer
, test
, output
The
美的m3l233b好不好、美的m3l233b、xprinter xp233b、m3l233b、xp 233b,以便于您获取更多的相关知识。