基于用户行为分析的关联推荐

  我们会发现很多网站都具备了内容推荐的功能,不仅是像B2C电子商务类的卓越的图书推荐,也包括兴趣类网站像豆瓣的豆瓣猜等。这类功能无疑在帮助用户发现需求,促进商品购买和服务应用方面起到了显著性的效果。那么这类的推荐是怎么得到的呢?其实跟网站数据分析不无相关,我们可以来简单看一下它的原理和实现。

  关联推荐在营销上被分为两类:

  向上营销(Up Marketing):根据既有客户过去的消费喜好,提供更高价值或者其他用以加强其原有功能或者用途的产品或服务。

  交叉营销(Cross Marketing):从客户的购买行为中发现客户的多种需求,向其推销相关的产品或服务。

  向上营销是基于同类产品线的升级或优化产品的推荐,而交叉营销是基于相似但不同类的产品的推荐。举个简单的例子,可以看一下苹果的产品线:

  当你购买一个ipod nano3的时候,向你推荐升级产品nano4、nano5或者功能类似的itouch就叫做“向上营销”;而推荐Iphone、Mac或ipad的时候就是“交叉营销”了。

  而关联推荐在实现方式上也可以分为两种:以产品分析为基础的关联推荐和以用户分析为基础的关联推荐。产品分析的关联推荐指的是通过分析产品的特征发现它们之间的共同点,比如《Web Analytics》和《Web Analytics 2.0》的作者都是Avinash Kaushik,而且书名都包含Web Analytics,都是网站分析类的书籍,同时也可能是同一个出版社……那么基于产品的关联就可以向购买了《Web Analytics》的用户推荐《Web Analytics 2.0》。而基于用户分析的推荐是通过分析用户的历史行为数据,可能会发现购买了《Web Analytics》的很多用户也买了《The Elements of User Experience》这本书,那么就可以基于这个发现进行推荐,这种方法就是数据挖掘中的关联规则(Association Rules)挖掘,其中最经典的案例就是沃尔玛的啤酒和尿布的故事。

  目前很多的关联推荐还是基于产品层面的,因为实现上更为简单(对于网站而言,产品数据明显少于用户行为数据,而且可能相差好几个数量级,所以分析工作就会轻很多),基于产品的推荐更多地以上面所述的两种营销手段来实现,更偏向于传统的“推式”营销(个人对这种营销方式比较没有好感,尤其“捆绑销售”之类)。

  基于用户行为分析的关联推荐

  所以个人更偏向于基于用户分析的实现方式,这样更有利于发现用户的潜在需求,帮助用户更好的选择它们需要的产品,并由用户决定是否购买,也就是所谓的“拉式”营销。通过向用户推荐产品或服务,激发用户的潜在需求,促使用户消费,更加符合“以用户为中心”的理念。所以下面主要简单描述下以用户行为分析为基础的关联推荐,无论你是电子商务网站或是其他任何类型的网站,其实都可以实现这个功能,只要你具备以下前提:

  1.能够有效地识别网站用户;

  2.保留了用户的历史行为数据(点击流数据(clickstream)或运营数据(outcomes));

  3.当然还需要一个不错的网站数据分析师。

  这里以电子商务网站为例来说明一下关联规则的具体实现。目前大部分电子商务网站都提供用户注册的功能,而购物的用户一般都是基于登录的条件下完成的,所以这里为用户识别提供了最为有效的标示符——用户ID(关于用户识别的方法,请参考这篇文章——网站用户的识别);同时网站会把所有用户的购物数据储存在自己的运营数据库里面,这个为用户行为分析提供了数据基础——用户历史购物数据。所以满足了上述的前两个条件,我们就可以着手进行分析了。

  关联规则的实现原理是从所有的用户购物数据中(如果数据量过大,可以选取一定的时间区间,如一年、一个季度等),寻找当用户购买了A商品的基础上,又购买了B商品的人数所占的比例,当这个比例达到了预设的一个目标水平的时候,我们就认为这两个商品是存在一定关联的,所以当用户购买了A商品但还未购买B商品时,我们就可以向该类用户推荐B商品。如下图:

  从上图可以看到其中牵涉3个集合:所有购买过商品的用户全集U、购买了A商品的用户集合A以及在购买了A商品之后又购买了B商品的用户集合G。基于这3个集合可以计算关联规则挖掘中的2个关键指标——支持度(Support)和置信度(Confidence):

  支持度=购买了A和B商品(集合G)的人数/所有购买过商品(集合U)的人数

  置信度=购买了A和B商品(集合G)的人数/购买了A商品(集合A)的人数

  得到这两个指标之后,需要为这两个指标设立一个最低门槛,即最小支持度和最小置信度。因为在用户的购买行为中,购买A商品的用户可能不仅购买B商品,还购买了C、D、E……等一系列商品,所以我们需要分别算出所有这些组合的支持度和置信度,只有满足比如支持度>0.2,置信度>0.6的这些商品组合才可以认为是有关联的,值得推荐的。

  当然,如果你的网站不是电子商务网站,你同样可以用用户浏览网站的点击流数据实现关联推荐的功能。同样是基于用户历史行为,比如浏览了A页面的用户也浏览的B页面、观看了A视频的用户也观看了B视频、下载了A文件的用户也下载了B文件……

  数据挖掘中的关联规则挖掘一般采用基于频繁集的Apriori算法,是一个较为简单有效的算法,这里就不具体介绍了,有兴趣的朋友可以去查下资料。

  在进行关联规则分析时需要注意的一些问题

  ●注意关联推荐的适用范围和前提条件,并不是每一类网站都适合或需要进行关联推荐的;

  ●最小支持度和最小执行度的设立需要根据网站运营的特征设定,不宜偏高或偏低,建议基于实验或实践的基础上不断优化,寻找一个最佳的权衡点。

  ●需要特别注意的是,在关联规则中A商品与B商品有关联,并不意味着B商品与A商品的关联也成立,因为两者的置信度算法是不同的,关联方向不可逆。

  ●关联规则分析在算法上其实并不难,但是要将其在网站上真正实现好,在满足上面3个前提的基础上还需要持续地优化算法,而更主要的是需要网站各部门的协作实现。

  所以,基于用户行为分析的关联推荐完全从用户的角度进行分析,比单纯地比较产品间的关联更为深入和有效,更加符合用户的行为习惯,有利于发现用户的潜在需求,不妨尝试一下。

时间: 2024-10-29 16:39:33

基于用户行为分析的关联推荐的相关文章

向上营销、交叉营销与关联推荐

我们会发现很多网站都具备了内容推荐的功能,不仅是像B2C电子商务类的卓越的图书推荐,也包括兴趣类网站像豆瓣的豆瓣猜等.这类功能无疑在帮助用户发现需求,促进商品购买和服务应用方面起到了显著性的效果.那么这类的推荐是怎么得到的呢?其实跟网站数据分析不无相关,我们可以来简单看一下它的原理和实现. 关联推荐在营销上被分为两类: 向上营销(Up Marketing):根据既有客户过去的消费喜好,提供更高价值或者其他用以加强其原有功能或者用途的产品或服务. 交叉营销(Cross Marketing):从客户

基于用户行为的网站优化策略分析

中介交易 http://www.aliyun.com/zixun/aggregation/6858.html">SEO诊断 淘宝客 云主机 技术大厅 随着百度算法的不断升级,百度不断优化自身指南,开始逐渐和用户体验靠拢,这就说明了当下的网站优化开始进入新的阶段,那就是要基于用户行为进行优化,这样就能够起到事半功倍的优化效果.因为百度提出的优化策略就是为了让自己更好的抓取内容,并为广大的用户提供服务,而我们进行百度优化其目的也是为广大用户服务,殊途而同归,所以这给基于用户行为进行网站优化提供

基于网站用户浏览行为分析的个性化推荐服务综述

中介交易 SEO诊断 淘宝客 云主机 技术大厅 互联网在上个世纪90年代开始普遍民用,发展至本世纪初,己经发展成为一个蕴含各个领域的.巨大的.分布广泛的.全球性的信息交换与共享平台,同时它也成 为人们获取信息的一个重要途径.至此,人们已经不愁找不到自己需要的信息.但是由于现在Web上信息的海量性.动态性.非结构性和无序性等特点,使得人们 要从Web上获取自己所真正需要的信息变得非常的困难,有时甚至感觉如同大海捞针.Google.百度和Yahoo等公认比较优秀的搜索引擎将网络资源进 行了一定的组织

【近战】基于微博用户关系与行为的用户建模分析

以下为[近战]第一篇,基于微博用户关系与行为的用户建模分析. 用户建模是广告.推荐.搜索算法最基础也是最核心的技术问题之一,本报告将介绍新浪微博大数据挖掘团队如何综合利用社交关系和用户行为来建立用户模型.以下分享下精彩内容.   微博及大数据   微博作为中国最大的社交媒体平台,微博沉淀了海量的用户,内容,关系,和行为数据.   其中用户:注册人数10亿,月活人数1.98亿,日活人数:8900万.关系:关注关系近千亿,分组关系50亿+.内容:日增博文1亿+,日增原创4000万.行为:转发6000

基于用户细分的比较分析来分析网站

细分是用于比较的,比较是为了反映差异进而做出调整优化的,所以细分的目的最终还是指导运营决策,这个才是数据分析的价值体现.从网站的用户层面,我们根据用户访问的行为特征将用户细分成各种类型,因为用户行为各异,行为统计指标各异,分析的角度各异,所以如果要对用户做细分,可以从很多角度根据各种规则实现各种不同的分类,看到过有些数据分析报告做了各种用户的细分,各种用户行为的分析,再结合其他各种维度,看上去内容绝对足够丰富,但很难理解这些分析结果到底是为了说明什么问题,也许作为一个咨询报告反映当前整体的趋势和

基于Hadoop用户行为分析系统设计与实现

基于Hadoop用户行为分析系统设计与实现 北京交通大学  郝增勇 本课题在大数据背景下,针对不能全面准确分析网络用户行为的问题,利用网络安全开发包Libnids和分布式平台Hadoop关键技术,重点研究设计并开发出基于Hadoop的用户行为分析系统.本系统实现了海量数据包抓取和分布式存储.TCP重组和应用层HTTP行为分析等功能,不仅有助于服务提供者根据用户行为特征提供更好的推荐服务,而且为网络相关部门对网络舆论进行合理的监控奠定有效的技术支撑.本文采用了基于Hadoop的用户行为分析方法,首

基于用户细分的比较分析

从网站的用户层面,我们根据用户访问的行为特征将用户细分成各种类型,因为用户行为各异,行为统计指标各异,分析的角度各异,所以如果要对用户做细分,可以从很多角度根据各种规则实现各种不同的分类,看到过有些数据分析报告做了各种用户的细分,各种用户行为的分析,再结合其他各种维度,看上去内容绝对足够丰富,但很难理解这些分析结果到底是为了说明什么问题,也许作为一个咨询报告反映当前整体的趋势和用户特征确实合适,但如果真的要让数据分析的结果能够引导我们去做些什么,还是要在做用户细分前确定分析的目的,明确业务层面的

谁有基于用户的推荐系统或者协同过滤的算法和代码分析啊

问题描述 求个大数据的大神给个基于用户的推荐系统或者协同过滤的算法和代码分析啊我有部分代码但是不知道怎么在Eclipse上实现求解答啊1.publicclassAggregateAndRecommendReducerextendsReducer<VarLongWritable,VectorWritable,VarLongWritable,RecommendedItemsWritable>{...publicviodreduce(VarLongWritablekey,Iterable<Ve

基于用户的协同过滤推荐算法原理和实现

      在推荐系统众多方法中,基于用户的协同过滤推荐算法是最早诞生的,原理也较为简单.该算法1992年提出并用于邮件过滤系统,两年后1994年被 GroupLens 用于新闻过滤.一直到2000年,该算法都是推荐系统领域最著名的算法.       本文简单介绍基于用户的协同过滤算法思想以及原理,最后基于该算法实现园友的推荐,即根据你关注的人,为你推荐博客园中其他你有可能感兴趣的人. 基本思想       俗话说"物以类聚.人以群分",拿看电影这个例子来说,如果你喜欢<蝙蝠侠&