目标检测的图像特征提取之(二)LBP特征

原文地址:http://blog.csdn.net/zouxy09/article/details/7929531

       LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像局部纹理特征的算子;它具有旋转不变性和灰度不变性等显著的优点。它是首先由T. Ojala, M.Pietikäinen, 和D. Harwood 在1994年提出,用于纹理特征提取。而且,提取的特征是图像的局部的纹理特征;

1、LBP特征的描述

       原始的LBP算子定义为在3*3的窗口内,以窗口中心像素为阈值,将相邻的8个像素的灰度值与其进行比较,若周围像素值大于中心像素值,则该像素点的位置被标记为1,否则为0。这样,3*3邻域内的8个点经比较可产生8位二进制数(通常转换为十进制数即LBP码,共256种),即得到该窗口中心像素点的LBP值,并用这个值来反映该区域的纹理信息。如下图所示:

 

LBP的改进版本:

       原始的LBP提出后,研究人员不断对其提出了各种改进和优化。

(1)圆形LBP算子:

        基本的 LBP算子的最大缺陷在于它只覆盖了一个固定半径范围内的小区域,这显然不能满足不同尺寸和频率纹理的需要。为了适应不同尺度的纹理特征,并达到灰度和旋转不变性的要求,Ojala等对 LBP 算子进行了改进,将 3×3邻域扩展到任意邻域,并用圆形邻域代替了正方形邻域,改进后的 LBP 算子允许在半径为 R 的圆形邻域内有任意多个像素点。从而得到了诸如半径为R的圆形区域内含有P个采样点的LBP算子;

(2)LBP旋转不变模式

       从 LBP 的定义可以看出,LBP 算子是灰度不变的,但却不是旋转不变的。图像的旋转就会得到不同的 LBP值。

         Maenpaa等人又将 LBP算子进行了扩展,提出了具有旋转不变性的 LBP 算子,即不断旋转圆形邻域得到一系列初始定义的 LBP值,取其最小值作为该邻域的 LBP 值。

       图 2.5 给出了求取旋转不变的 LBP 的过程示意图,图中算子下方的数字表示该算子对应的 LBP值,图中所示的 8 种 LBP模式,经过旋转不变的处理,最终得到的具有旋转不变性的 LBP值为 15。也就是说,图中的 8种 LBP 模式对应的旋转不变的 LBP模式都是00001111。

(3)LBP等价模式

       一个LBP算子可以产生不同的二进制模式,对于半径为R的圆形区域内含有P个采样点的LBP算子将会产生P2种模式。很显然,随着邻域集内采样点数的增加,二进制模式的种类是急剧增加的。例如:5×5邻域内20个采样点,有220=1,048,576种二进制模式。如此多的二值模式无论对于纹理的提取还是对于纹理的识别、分类及信息的存取都是不利的。同时,过多的模式种类对于纹理的表达是不利的。例如,将LBP算子用于纹理分类或人脸识别时,常采用LBP模式的统计直方图来表达图像的信息,而较多的模式种类将使得数据量过大,且直方图过于稀疏。因此,需要对原始的LBP模式进行降维,使得数据量减少的情况下能最好的代表图像的信息。

        为了解决二进制模式过多的问题,提高统计性,Ojala提出了采用一种“等价模式”(Uniform Pattern)来对LBP算子的模式种类进行降维。Ojala等认为,在实际图像中,绝大多数LBP模式最多只包含两次从1到0或从0到1的跳变。因此,Ojala将“等价模式”定义为:当某个LBP所对应的循环二进制数从0到1或从1到0最多有两次跳变时,该LBP所对应的二进制就称为一个等价模式类。如00000000(0次跳变),00000111(只含一次从0到1的跳变),10001111(先由1跳到0,再由0跳到1,共两次跳变)都是等价模式类。除等价模式类以外的模式都归为另一类,称为混合模式类,例如10010111(共四次跳变)(这是我的个人理解,不知道对不对)。

       通过这样的改进,二进制模式的种类大大减少,而不会丢失任何信息。模式数量由原来的2P种减少为 P ( P-1)+2种,其中P表示邻域集内的采样点数。对于3×3邻域内8个采样点来说,二进制模式由原始的256种减少为58种,这使得特征向量的维数更少,并且可以减少高频噪声带来的影响。

2、LBP特征用于检测的原理

       显而易见的是,上述提取的LBP算子在每个像素点都可以得到一个LBP“编码”,那么,对一幅图像(记录的是每个像素点的灰度值)提取其原始的LBP算子之后,得到的原始LBP特征依然是“一幅图片”(记录的是每个像素点的LBP值)。

        LBP的应用中,如纹理分类、人脸分析等,一般都不将LBP图谱作为特征向量用于分类识别,而是采用LBP特征谱的统计直方图作为特征向量用于分类识别。

       因为,从上面的分析我们可以看出,这个“特征”跟位置信息是紧密相关的。直接对两幅图片提取这种“特征”,并进行判别分析的话,会因为“位置没有对准”而产生很大的误差。后来,研究人员发现,可以将一幅图片划分为若干的子区域,对每个子区域内的每个像素点都提取LBP特征,然后,在每个子区域内建立LBP特征的统计直方图。如此一来,每个子区域,就可以用一个统计直方图来进行描述;整个图片就由若干个统计直方图组成;

        例如:一幅100*100像素大小的图片,划分为10*10=100个子区域(可以通过多种方式来划分区域),每个子区域的大小为10*10像素;在每个子区域内的每个像素点,提取其LBP特征,然后,建立统计直方图;这样,这幅图片就有10*10个子区域,也就有了10*10个统计直方图,利用这10*10个统计直方图,就可以描述这幅图片了。之后,我们利用各种相似性度量函数,就可以判断两幅图像之间的相似性了;

3、对LBP特征向量进行提取的步骤

(1)首先将检测窗口划分为16×16的小区域(cell);

(2)对于每个cell中的一个像素,将相邻的8个像素的灰度值与其进行比较,若周围像素值大于中心像素值,则该像素点的位置被标记为1,否则为0。这样,3*3邻域内的8个点经比较可产生8位二进制数,即得到该窗口中心像素点的LBP值;

(3)然后计算每个cell的直方图,即每个数字(假定是十进制数LBP值)出现的频率;然后对该直方图进行归一化处理。

(4)最后将得到的每个cell的统计直方图进行连接成为一个特征向量,也就是整幅图的LBP纹理特征向量;

然后便可利用SVM或者其他机器学习算法进行分类了。

参考:黄非非,基于 LBP 的人脸识别研究,重庆大学硕士学位论文,2009.5

时间: 2024-10-02 20:56:59

目标检测的图像特征提取之(二)LBP特征的相关文章

目标检测的图像特征提取之(一)HOG特征

原帖地址:http://blog.csdn.net/zouxy09/article/details/7929348 1.HOG特征:        方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的梯度方向直方图来构成特征.Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功.需要提醒的是,HOG+SVM进行行人检测的方法是法国研究

ILSVRC2016目标检测任务回顾:图像目标检测(DET)

雷锋网(公众号:雷锋网)注:本文作者李瑜,中科院计算所前瞻研究实验室跨媒体组硕博士生,硕士导师唐胜副研究员,博士导师李锦涛研究员.2016年,作为360+MCG-ICT-CAS_DET团队核心主力参加了ImageNet大规模视觉识别挑战赛(ILSVRC)的 DET任务并获得第四名.目标检测相关工作受邀在ECCV 2016 ImageNet和COCO视觉识别挑战赛联合工作组会议上做大会报告. 计算机视觉领域权威评测--ImageNet大规模图像识别挑战赛(Large Scale Visual Re

看了这篇文章,了解深度卷积神经网络在目标检测中的进展

近些年来,深度卷积神经网络(DCNN)在图像分类和识别上取得了很显著的提高.回顾从 2014 到 2016 这两年多的时间,先后涌现出了 R-CNN,Fast R-CNN, Faster R-CNN, ION, HyperNet, SDP-CRC, YOLO,G-CNN, SSD 等越来越快速和准确的目标检测方法. 1. 基于 Region Proposal 的方法 该类方法的基本思想是:先得到候选区域再对候选区域进行分类和边框回归.  1.1 R-CNN[1] R-CNN 是较早地将 DCNN

从零开始码一个皮卡丘检测器-CNN目标检测入门教程(上)

本文先为大家介绍目前流行的目标检测算法SSD (Single-Shot MultiBox Object Detection)和实验过程中的数据集.训练.测试过程及结果参见<从零开始码一个皮卡丘检测器-CNN目标检测入门教程(下)> 目标检测通俗的来说是为了找到图像或者视频里的所有目标物体.在下面这张图中,两狗一猫的位置,包括它们所属的类(狗/猫),需要被正确的检测到. 所以和图像分类不同的地方在于,目标检测需要找到尽量多的目标物体,而且要准确的定位物体的位置,一般用矩形框来表示. 在接下来的章

大牛讲堂 | 山世光博士:自动驾驶系统中的目标检测技术

雷锋网按:作者山世光博士,中科院计算所研究员.博导,主要从事计算机视觉.模式识别.机器学习等相关研究工作.迄今已发表CCF A类论文50余篇,全部论文被Google Scholar引用9000余次.现任IEEE TIP,TIPNeurocomputing和PRL等国际学术刊物的编委(AE).研究成果曾获2005年度国家科技进步二等奖和2015年度国家自然科学奖二等奖. 本文中,山世光博士主要给我们分享梳理了物体检测技术的近期进展.  1.  Viola-Jones人脸检测器   物体检测在整个计

一文读懂深度学习框架下的目标检测(附数据集)

从简单的图像分类到3D位置估算,在机器视觉领域里从来都不乏有趣的问题.其中我们最感兴趣的问题之一就是目标检测. 如同其他的机器视觉问题一样,目标检测目前为止还没有公认最好的解决方法.在了解目标检测之前,让我们先快速地了解一下这个领域里普遍存在的一些问题. 目标检测 vs 其他计算机视觉问题图像分类 在计算机视觉领域中,最为人所知的问题便是图像分类问题. 图像分类是把一幅图片分成多种类别中的一类.  ImageNet是在学术界使用的最受欢迎的数据集之一,它由数百万个已分类图像组成,部分数据用于Im

目标检测101:一文带你读懂深度学习框架下的目标检测

从简单的图像分类到3D位置估算,在机器视觉领域里从来都不乏有趣的问题.其中我们最感兴趣的问题之一就是目标检测. 如同其他的机器视觉问题一样,目标检测目前为止还没有公认最好的解决方法.在了解目标检测之前,让我们先快速地了解一下这个领域里普遍存在的一些问题. 目标检测 vs 其他计算机视觉问题图像分类 在计算机视觉领域中,最为人所知的问题便是图像分类问题. 图像分类是把一幅图片分成多种类别中的一类. ImageNet是在学术界使用的最受欢迎的数据集之一,它由数百万个已分类图像组成,部分数据用于Ima

ILSVRC2016目标检测任务回顾——视频目标检测(VID)

雷锋网(公众号:雷锋网)按:本文作者王斌,中科院计算所前瞻研究实验室跨媒体计算组博士生,导师张勇东研究员.2016年在唐胜副研究员的带领下,作为计算所MCG-ICT-CAS团队核心主力队员(王斌.肖俊斌),参加了ImageNet大规模视觉识别挑战赛(ILSVRC)的视频目标检测(VID)任务并获得第三名.目标检测相关工作受邀在ECCV 2016 ImageNet和COCO竞赛联合工作组会议(ImageNet and COCO Visual Recognition Challenges Joint

复旦、清华和英特尔中国研究院ICCV新作:完全脱离预训练模型的目标检测方法

最近,由复旦大学.清华大学和英特尔中国研究院合作提出的一种新型的目标检测方法 (DSOD) 被国际计算机视觉顶级会议ICCV 2017接收.论文标题为:DSOD: Learning Deeply Supervised Object Detectors from Scratch. 论文地址:https://arxiv.org/abs/1708.01241.论文代码:https://github.com/szq0214/DSOD. 论文在Arxiv放出之后,在社交网络上引起广泛关注.本文对这个工作做