小白学数据分析------>日活跃人数分析

从今天开始,特开辟一个小专栏,题目暂定为小白学数据分析,鄙人不才,在数据分析的道路上走的崎岖坎坷,同时数据分析本身是一个多面和复杂的工作,要懂得理论(统计、概率、数据挖掘、算法、模型)更要懂得业务,懂得行业理论,还要有灵活多变的思维,想想还是很复杂和麻烦的,所讲内容不但是理论,不仅是数据,尽量把这些东西综合起来,立体的来看,鄙人水平有限,很多的内容是尝试和改进,参考了很多的材料,在木有高人指点和牛人帮助的情况下,我只能借助浩瀚的网络知识和自己的悟性,今天决心拿出来给各位主要是帮助大家和我一起进步。

第一天就从一份数据的分析开始,这里面涉及了很多的内容,大家需要慢慢理解。

案例:

某位网友提供了一份游戏的日活跃账号数的数据信息,游戏是从2011年9月份开始了测试,到2012年2月,但是产品究竟表现如何,从PLC(产品生命周期----《营销管理》)来看,产品目前处于一个什么时期,下一步怎么来做营销和运营工作,这是一个需要关注的问题。今天就从日活跃这个数据指标的解析上简单看看PLC的解读。

设计分析的数据指标有很多方面,总体来说就两块,收入+人气,我们就从对人气的分析上下手,考虑文章篇幅关系,今天单列每日活跃的分析过程,其他指标的把握和分析基本和此相同,大家可以自己尝试完成。

术语解释:

每日活跃用户(DAU):每日登录过游戏的玩家数量(重复登录者不累加)

IB:Item-Billing,游戏中通过游戏币交易流通的道具

APA:活跃付费账号数

PLC:产品生命周期-----《营销管理》

ARPU:平均每名玩家盈利能力

新登用户:每日注册成为游戏玩家的数量

每日有效活跃玩家:达到某一个指标(一般是在线时长)的日活跃玩家数量

每日有效新登用户:达到注册并成功登录进行过游戏的玩家数量

为什么要看每日活跃用户?

 

抛开游戏上线初期的推广营销因素影响后,版本随后会进入真正意义上的成长和发展阶段,这个阶段也是对于游戏品质和开始阶段投放影响的评估(当然这种靠推广的影响会存在一定的时效性,在对于DAU分析时,要抛开这个阶段)。每日活跃用户的变化说明以下的原因:

人气波动:建立每日活跃人数的弹性数值区间(阈值),当然这点的预警要按照每个月的具体情况来看,比如每个月的节日,假期,学生开学等其他因素的影响情况,建立一套因素影响指数,并作用于人气波动的预警。

趋势走向:综合一个阶段的日活跃变化情况,对于重大拐点和趋势进行分析,并预测下一个周期的变化形式。

产品质量:从日活跃的趋势变化和人气波动等其他因素综合看产品版本更新,活动设置等对于产品的PLC的影响,以及产品质量是否符合玩家的预期(质量的定义很广泛,这里比如IB设计,系统设计,交互体验等等)。

影响因素:正如刚才所言,我们综合一个周期的日活跃数据 和其他数据制定影响因素指数,便于宏观把控数据的变化,比如进入预警范围的数据究竟因为这些影响因素的影响有多大。做到心中有数。

当然,以上是简单的列举了一下日活跃用户参与的数据分析的几个方面和作用,对于数据分析千万不能局限在一个指标而进行所谓的分析,要全面的结合其他指标进行衡量和分析。比如新登用户,收入数据(充值,ARPU,APA等等)。

怎么来分析DAU?

如之前文章所说,我们主要运用曲线图和箱线图来分析DAU数据,如下图,使用IBM SPSS 19进行箱线图的分析(其详细过程以后在叙述)。

再次箱线图中涉及几个术语指标,先给各位再解释一下:

方差:度量随机变量和其数学期望(即均值)之间的偏离程度,测度数据变异(离散)程度的最重要的指标,方差是各个数据与其算术平均数的离差平方和的平均数,通常以σ2表示。方差的计量单位和量纲不便于从经济意义上进行解释,所以实际统计工作中多用方差的算术平方根——标准差来测度统计数据的差异程度。

http://wiki.mbalib.com/wiki/%E6%96%B9%E5%B7%AE

方差和标准差也是根据全部数据计算的,它反映了每个数据与其均值相比平均相差的数值,因此它能准确地反映出数据的离散程度。比如,平均日活跃为A,通过方差判定整个这个月的DAU波动情况,以及距离A的离散程度。

期望:广义的来说,是指人们对每样东西的提前勾画出的一种标准,达到了这个标准就是达到了期望值。从概率论和统计学中,离散型随机变量的一切可能的取值xi与对应的概率Pi(=xi)之积的和称为该离散型随机变量的数学期望(设级数绝对收敛),记为E(x)(http://baike.baidu.com/view/295737.htm),我们多数情况下只讨论离散型期望。

中位数:中位数是指将数据按大小顺序排列起来,形成一个数列,居于数列中间位置的那个数据。中位数用Me表示。

  从中位数的定义可知,所研究的数据中有一半小于中位数,一半大于中位数。中位数的作用与算术平均数相近,也是作为所研究数据的代表值。在一个等差数列或一个正态分布数列中,中位数就等于算术平均数。

在数列中出现了极端变量值的情况下,用中位数作为代表值要比用算术平均数更好,因为中位数不受极端变量值的影响;如果研究目的就是为了反映中间水平,当然也应该用中位数。在统计数据的处理和分析时,可结合使用中位数。

http://wiki.mbalib.com/wiki/%E4%B8%AD%E4%BD%8D%E6%95%B0

四分位数:将数据划分为4个部分,每一个部分大约包含有1/4即25%的数据项。这种划分的临界点即为四分位数。它们定义如下:

Q1=第1四分位数,即第25百分位数;

Q2=第2四分位数,即第50百分位数;

Q3=第3四分位数,即第75百分位数。

http://wiki.mbalib.com/wiki/%E5%9B%9B%E5%88%86%E4%BD%8D%E6%95%B0

四分位差:四分位差又称内距、也称四分间距(inter-quartile range),是指将各个变量值按大小顺序排列,然后将此数列分成四等份,所得第三个四分位上的值与第一个四分位上的值的差。四分位差用公式表示:

  Q = Q3 − Q1

  其中:Q1的位置=(n+1)/4

Q3的位置=3(n+1)/4

四分位差反映了中间50%数据的离散程度。其数值越小,说明中间的数据越集中;数值越大,说明中间的数据越分散。与极差(最大值与最小值之差)相比,四分位差不受极值的影响。此外,由于中位数处于数据的中间位置,因此四分位差的大小在一定程度上也说明了中位数对一组数据的代表程度。主要用于测度顺序数据的离散程度。当然,对于数值型数据也可以计算四分位差,但不适合于分类数据。

http://wiki.mbalib.com/wiki/%E5%9B%9B%E5%88%86%E4%BD%8D%E5%B7%AE

其以上的几个信息的示意图如下所示(http://wiki.mbalib.com/wiki/%E7%AE%B1%E7%BA%BF%E5%9B%BE):

下面我们从这个箱线图来分析一下DAU的近期变化情况

除了2012-Jan以外,都没有离群点或者极限值,相对而言,每个月游戏人数整体比较稳定,没有发生巨大的变化。而在2012-Jan出现了两个离群值,调查发现,是1月4日和1月5日出现的问题。经过CCU曲线分析,发现关键节点数据变化很小,但是24小时总体出现微下降,说明玩家4日和5日的活跃数据被稀释了,此外,通过对竞品的分析发现4日和5日有线上领取活动,再者,节后两天学生基本需要返校和白领休假归来,造成数据暂时下滑。

此外,我们拿到分析数据和上图来看,12年二月份和11年9月份的中位数较高,说明这段时间内的平均日活跃相对于本月来说较高,这可以看出这段时间内,游戏内的用户上线较为频繁(当然此处要结合PCU,在线时长来看更加准确)。

9月份为开始测试的月份,而2月份为假期阶段,因此玩家上线的意愿相对来说会比较高一些。这也是在意料之中的情况。

然而11年的11月份和12月份,中位数偏低,玩家上线意愿不够强烈,11月份已经非常低了,主要原因在于这一时期玩家进入考试周期,四六级,中期考试等等,属于淡季阶段。

11年10月份国庆节期间,玩家上线意愿还算不错,但是没有达到理想的效果,中位数低于平均水平,因此国庆假期的活动或者推广效果不是非常理想,间接也导致了下个月下滑的非常迅速,因此下次节日活动需要进行重新评估和调整。数据如下:

对于12年一月份的表现算是情理中,今年由于1月份过年,然而过年7天玩家的游戏时间其实是缩水的,没有太多精力投入游戏,但是从箱线图来看,表现还算正常。高于平均水平,活动效果应该比较不错,一月份虽然出现了两个离群值,但是一月份的标准差是最小的,也就是说一月份整体的活跃趋势稳定,没有大的波动。

总体来看,如果要考察PLC,需要结合收益数据,以及其他的诸如ACU,PCU,新登等数据来综合看待PLC,但是从DAU来看(狭义来说),人气在几个月来保持相对的稳定,但是整体上经历了小幅的下滑,换个角度说,这款产品存在一些问题,人气持续稳中有降,可以说玩家度过初级的新手期后,中间的成长、竞争、追求阶段出现了问题,诉求不能满足,导致人气下滑。更加详细具体的原因需要更多的数据综合分析。

注:以上分析皆建立在与数据的对比之上和其他辅助的数据综合分析上,当分析者单纯观察一段数据时,不能通过中位数高低轻易下定论认为用户上线频繁与否。需要考虑很多的客观因素。

明天我们说说怎么再从曲线图来分析一下这几个月的日活跃变化情况。

 

时间: 2024-10-23 05:53:49

小白学数据分析------>日活跃人数分析的相关文章

小白学数据分析------>相关分析之距离分析在道具购买量的应用探索

  前几天,写过一篇关于相关分析的的文章,很多人都看到了并有很多人在咨询关于这篇文章的一些内容,相关分析是一类很有用的分析方法,如之前所提到的,相关分析由三部分组成,前几日的文章是讲了其中第一部分,第二部分是偏相关分析,第三部分就是复相关分析,说白了其实就是相关分析变量的多少来确定这三部分的.今天这里不谈偏相关分析,以为网友给我截图,问我下面的成交量相关系数的是怎么算出来的,其实这个就是复相关的典型应用,多变量的相关分析.插一句,该图来自于腾讯大讲堂15-市场研究及数据分析理念及方法概要介绍.大

小白学数据分析----->首次购买记录分析方法

最近几天比较忙,大家都在问如何建立比较完整和有效的数据分析平台,说实话这个问题我考虑了很久,有效并有深度得数据挖掘与分析平台对于游戏产品的质量改善,人气.收益的提升,玩家资源的保有 ,客群分析非常有必要.众多经分系统的好处不在此处解释,且看今天讨论的内容,首次购买记录分析. 在如今道具收费的免费游戏中,首次购买记录的分析发挥着巨大的作用,这与电商的购买不太一样,还是存在很大的区别.道具收费的游戏中,道具购买是我们收益的主体,如何对于道具购买的分析是非常重要的一环. 由于道具收费的免费游戏,玩家存

小白学数据分析-----> 有关于流失分析的探讨

早先我曾探讨一个关于流失分析的整套流程问题,也说了流失分析是如何的重要,大概这种解说是苍白无力的,因为拿不出数据来说明这个问题,因此大家就会感觉比较飘渺,今天就是流失分析再次进行探讨,这次从数据的角度来理解为什么要做好流失分析. 挽留一个老用户相比于拉动一个新用户,在游戏收入.产品周期维护方面都有好处的,只是我们现在解决用户入口的问题,但是没有重视用户流失的问题.这个问题就好像一个水池子,有进口,但是也有出口,我们不能只关注进口的进水速率,却忽略了出水口的出水速率.这点对应了我们对于指标的量化和

小白学数据分析----->如何设计和分析数据指标

今天说到的这个题目,看起来有点大,不过作为游戏数据分析师,早晚都要设计和分析数据指标.在<移动游戏运营数据分析指标白皮书>(http://www.xuefenxi.com/forum.php?mod=viewthread&tid=2&extra=page%3D1)中,提炼了一些针对游戏数据分析的指标,这只是分析工作的第一步,还要有效的组织起来,并按照需求进行细分,即按需进行二次设计和分析.白皮书的指标旨在规范大家对于一些最基本最常用概念的认识和学习,有所领悟,有所发挥. 而今天

小白学数据分析-----&gt;从购买记录分析道具支付环节

昨天发现充值异常增高,于是准备做一次详尽的分析,但是当我开始提取数据时,发现了一件比较异常的事情,这是在查询玩家的购买记录时发现的(这是因为往往我们要分析充值时,也要辅助的去看一下当日的购买情况),截图如下: 可以看得到玩家对于该道具的购买需求很高,在一段时间内不断的购买,但是商城不支持批量购买,玩家每次交易只能买一件,然后再次点击再次购买.看到这里,我点蛋疼了. 针对这个问题,昨晚和BOSS聊了一些,就是在讨论商城购买支付环节的问题.总的理解起来是目前的商城购买UI已经是确定符合玩家的习惯的U

小白学数据分析-----&gt;什么是活跃_I(DAU)

最近和几个人聊天,大家对于活跃都有着自己的看法,此外因为一些标准的问题,不熟悉分析术语的很多人把活跃,留存等很多信息都搞混了.后来发现这是一个很现实的问题.在一些我 看来不是问题的问题都变成了问题了,因此在此特地说说活跃的事,帮助更多从事游戏数据分析的小白们成长. 究竟什么是活跃?在日常与外界合作过程中,我们经常日活跃.周活跃.月活跃等等信息,貌似听起来比较简单,但是真正如果自己实施操作统计数据时却发现自己又不懂这些定义,因此作为一些分析师.甚至开发人员就会发现很难去操作.以下我将描述三个活跃的

小白学数据分析-----&gt;数据指标 累计用户数的使用

小白学数据分析--à数据指标累计用户数的使用 累计用户数是指注册用户数的累计,即可以认为是新用户的累计.在一般的数据统计中,我们基本上都会涉及到这个指标,且这个指标是逐渐累加的,比如: 时间                   注册用户数[新登用户]           累计注册用户数 1日                    100                                                 100 2日                    120   

小白学数据分析-----&gt;付费用户的金字塔模型实践操作

免费游戏中付费用户模型分析 最近看了不少文章,对于付费用户的模型也有了很深刻的理解和认识,早先我做了不少关于大R,中间R,低端R用户的分析,想来还是觉得草草了事,近来有网友提出来,理论探讨的多了些,实践上手的东西少了点,毕竟还是叫做小白学数据分析啊,今天就把以前说过的付费用户的模型具体的实践一下. 感悟和理论 得到的灵感首先要感谢Nicholas Lovell 的这篇文章,是我得到了一些处理和分析这个模型的办法.连接如下: http://www.gamesbrief.com/2011/11/wh

小白学数据分析之关联分析理论篇

关联分析的学习 在说关联分析之前,先说说自己这段时间的一些感受吧,这段时间相对轻松一些,有一些时间自己自己来学习一些新东西和知识,然而却发现捧着一本数据挖掘理论的书籍在一点一点的研读实在是很漫长,而且看过了没有什么感觉.数据这一行理论很多,算法很多,模型很多,自己现在一直是结合业务来做的数据分析与挖掘,相比电商而言,游戏业做的数据大多很糙,但是仅仅结合业务和运营,更加注重我们客户的质量和维护,当然这不是说电商没做,实际上电商一直在做,然而最近一次经历发现,我们过多的时候去讨论了算法,模型,新理论