[再寄小读者之数学篇](2014-06-22 函数恒为零的一个充分条件 [中国科学技术大学2011年高等数学B考研试题])

设 $f(x)$ 在 $\bbR$ 上连续, 又 $$\bex \phi(x)=f(x)\int_0^x f(t)\rd t \eex$$ 单调递减. 证明: $f\equiv 0$.

 

证明: 设 $$\bex g(x)=\cfrac{\sez{\int_0^x f(t)\rd t}^2}{2}, \eex$$ 则 $g'(x)=\phi(x)$ 递减, 而 $$\bex g'(x)\sedd{\ba{ll} \geq g'(0)=0,&x<0,\\ \leq g'(0)=0,&x>0; \ea} \eex$$ 进一步, $$\bex g(x)\sedd{\ba{ll} \leq g(0)=0,&x<0,\\ \leq g(0)=0,&x>0. \ea} \eex$$ 如此, $g(x)\leq 0$, $$\bex \int_0^x f(t)\rd t=0,\quad \forall\ x, \eex$$ $$\bex f(x)=\sez{\int_0^x f(t)\rd t}'=0,\quad \forall\ x. \eex$$

 

时间: 2024-10-11 18:30:09

[再寄小读者之数学篇](2014-06-22 函数恒为零的一个充分条件 [中国科学技术大学2011年高等数学B考研试题])的相关文章

再寄小读者之数学篇[2014.01.01-2014.06.30]

[再寄小读者之数学篇](2014-06-28 证明级数几乎处处收敛) 设 $f\in L(\bbR)$, 试证: $$\bex \vsm{n}f(n^2x) \eex$$ 在 $\bbR$ 上几乎处处收敛到一 Lebesgue 函数.   [再寄小读者之数学篇](2014-06-27 向量公式: The Hall term) $$\bex \n\cdot{\bf b}=0\ra \n\times [(\n\times {\bf b})\times {\bf b}]=\n\times [\n\cd

再寄小读者之数学篇[2014.07.01-2014.12.31]

[再寄小读者之数学篇](2014-12-24 乘积型不等式)   [再寄小读者之数学篇](2014-12-04 $\left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0.$)  试证: $$\bex \left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0. \eex$$    [再寄小读者之数学篇](2014-11-27 华中科技大学2014年高等代数考研试题

[再寄小读者之数学篇](2014-06-22 不等式 [中国科学技术大学2011年高等数学B考研试题])

证明不等式: $$\bex 1+x\ln\sex{x+\sqrt{1+x^2}}>\sqrt{1+x^2},\quad x>0. \eex$$   证明: 令 $x=\tan t,\ 0<t<\cfrac{\pi}{2}$, 而只要证明 $$\bex 1+\tan t\ln\sex{\sec t+\tan t}>\sec t. \eex$$ 令 $$\bex f(t)=1+\tan t\ln\sex{\sec t+\tan t}-\sec t, \eex$$ 则 $f(0)=

[再寄小读者之数学篇](2014-06-22 求极限 [中国科学技术大学2011年高等数学B考研试题])

设数列 $\sed{x_n}$ 满足 $0<x_1<\pi$, $x_{n+1}=\sin x_n\ (n=1,2,\cdots)$. (1) 证明 $\dps{\vlm{n}x_n}$ 存在, 并求其极限; (2) 计算 $\dps{\vlm{n}\sex{\cfrac{x_{n+1}}{x_n}}^{\frac{1}{x_n^2}}}$; (3) 证明 $\dps{\vlm{n}\sqrt{\cfrac{n}{3}}x_n=1}$.   证明: (1) 由 $0<x_{n+1}=\s

再寄小读者之数学篇

此栏目主要用于回答一些同学.学生.网友的数学问题, 自己整理的一些内容. 有些已给出解答, 有一些没有 (可能懒得写, 也可能确实不知道), 如您知道, 欢迎告知 (可以是tex编辑, mathtype编辑, word编辑, pdf编辑, 可写上您的大名或者笔名, 我会放到相应位置去). 如您需要 pdf 文件, 请通过支付宝购买 (打款至 zhangzujin361@163.com,在付款说明中注明你所需要的哪一期), 一般1-2日内发货 (节假日除外), 价格为: ($5\times 2=1

[再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]特征多项式的互素分解)

(2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]特征多项式的互素分解) 设 $f(x)$ 为 ${\bf A}$ 的特征多项式, 且存在互素的次数分别为 $p,q$ 的多项式 $g(x),h(x)$ 使得 $f(x)=g(x)h(x)$. 求证: $$\bex \rank g({\bf A})=q,\quad \rank h({\bf A})=p. \eex$$ 证明: 设 $$\bex g(x)=\prod_{i=1}^s (\lm

[再寄小读者之数学篇](2014-06-03 华罗庚等式)

在 [赵春来, 徐明曜, <抽象代数I>, 习题 1.3, Page 46] 有华罗庚等式: $$\bex AB\neq 0,E\ra A-\sex{A^{-1}+\sex{B^{-1}-A}^{-1}}^{-1}=ABA. \eex$$  本来打算利用它给出[家里蹲大学数学杂志]第291期南京航空航天大学2014年高等代数考研试题参考解答最后一题的一个新证明. 可惜了. 

[再寄小读者之数学篇](2014-06-14 [四川师范大学 2014 年数学分析考研试题] 积分不等式)

设函数 $f$ 在 $[0,1]$ 上有连续的二阶导数且 $f(0)=f(1)=0$, 但 $f(x)$ 在 $[0,1]$ 上不恒等于零. 证明: $$\bex |f(x)|\leq \cfrac{1}{4}\int_0^1 |f''(x)|\rd x,\quad \forall\ x\in [0,1]. \eex$$    解答: 用 $-f$ 代替 $f$, 而不妨设 $$\bex \exists\ c\in (0,1),\st 0<f(c)=\max_{x\in [0,1]}|f(x)|

[再寄小读者之数学篇](2014-04-20 [浙江大学 2014 年高等代数考研试题] 相似于对角阵的一个充分条件)

设 ${\bf X},{\bf Y}$ 分别为 $m\times n$ 与 $n\times m$ 阵, 且 $$\bex {\bf Y}{\bf X}={\bf E}_n,\quad {\bf A}={\bf E}_m+{\bf X}{\bf Y}. \eex$$ 证明: ${\bf A}$ 相似于对角阵. 证明: 由 ${\bf Y}{\bf X}={\bf E}_n$ 知 $$\bex n=\rank({\bf Y}{\bf X})\leq \min\sed{\rank({\bf Y}),