介绍几个重要的算法

       在前一段时间,我看了不少的论文,里面涉及到许许多多“奇怪”的算法。最近,我又看了一些专门讲解“算法”的书籍,了解了各算法的来历、特点及应用情况等。

       在本文中,我将对一些重要的算法进行简单的介绍。

1) 灰色预测算法

       在求解某些问题的过程中,需要对相关数据进行预测,这时就要用到灰色模型(gray model),其理论基础是灰色系统理论。

        灰色预测算法通过鉴别系统因素之间发展趋势的相异程度,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而达到预测事物的未来发展趋势的目的。

2) 遗传算法

       遗传算法是智能算法的一种,它模拟达尔文生物进化论的自然选择和孟德尔遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。

       一般的遗传算法包括七个过程:编码、解码、交配、突变、倒位、个体适应度评估和复制。

3) 粒子群算法

       现代算法分为硬计算和软计算。前者需要建立数学模型,后者是一种动态自适应求解方式且不需要深入的数学模型。

        粒子群(PSO)算法最早于1995年提出,它是基于群鸟的觅食过程。此过程其实是一个最佳决策的过程,每只鸟的初始状态处于随机位置,飞翔的方向也是随机的。但是,随着时间的推移,这些初始处于随机位置的鸟类通过群内相互学习、信息共享和个体不断积累自身寻觅食物的经验,自组织成一个群落,并逐渐朝唯一的目标前进。

        PSO算法的优点是收敛速度快和更容易找到全局最优值等。

4) 模拟退火算法

       模拟退火算法(SA)是所谓的三大非经典算法之一,它是一种通用概率算法,用来在一个大的搜索空间内寻找问题的最优解。

       现代的SA形成于20世纪80年代初,其思想源于固体的退火过程,即将固体加热至足够高的温度,再缓慢冷却;升温时,固体内部粒子温度升高变为无序状,内能增大,而缓慢冷却时粒子又逐渐趋于有序。

       SA也可应用于组合最优化问题中。

5) 人工神经网络算法

       人工神经网络(ANN)具有人脑的学习记忆功能,它是由大量简单的基本元件(神经元)相互连接,通过模拟人的大脑神经处理信息的方式,进行信息并行处理和非线性转换的复杂网络系统。

       神经网络的优点是多输入多输出实现了数据的并行处理以及自学习能力。目前技术最成熟、应用范围最广泛的两种网络是前向反馈(BP)网络和径向基(RBF)网络。

       人工神经网络主要应用于数据建模、预测、模式识别和函数优化等。

6) 小波分析

       小波分析是在傅里叶变换的基础之上发展起来的,它是纯数学、应用数学和工程技术的完美结合。

       小波分析的核心是小波函数的构建和多尺度分析,小波函数的主要特质是快速衰减性和震荡性,其子函数都是相互正交的。

7) 计算机虚拟

       计算机虚拟是应用电子计算机对系统的结构、功能和行为以及参与系统控制的人的思维过程和行为进行动态逼真的一种虚拟行为。虚拟过程包括组建模型和计算机实验两个主要步骤。

       虚拟的工具主要由虚拟软件和虚拟硬件组成。计算机虚拟技术能够带来巨大的社会和经济效益。

       可以看出,各算法具有以下共同点:1)具有较成熟的理论基础,特别是数学基础;2)大部分算法的目的都是力求最优解;3)其它学科的发展能够促进计算机科学的发展,许多优秀算法均可以在实际生活中找到原型。

       期待未来有更为优秀的算法出现!

时间: 2025-01-30 02:10:14

介绍几个重要的算法的相关文章

标准CSV格式的介绍和分析以及解析算法实例详解_C 语言

     CSV是一种古老的数据传输格式,它的全称是Comma-Separated Values(逗号分隔值).出生在那个标准缺失的蛮荒年代,CSV的标准一直(到2005年)是NULL--世间存在着N种CSV格式,它们自成体系,相互不兼容.比如我们从名字可以认为CSV至少是一种使用逗号分隔的格式,但是实际上,有的CSV格式却是使用分号(;)去做分隔.假如,不存在一种标准,那么这东西最终会因为碎片化而发展缓慢,甚至没落.本文讨论的CSV格式是基于2005年发布的RFC4180规范.我想,在这个规范

【原创】机器学习之PageRank算法应用与C#实现(1)算法介绍

考虑到知识的复杂性,连续性,将本算法及应用分为3篇文章,请关注,将在本月逐步发表. 1.机器学习之PageRank算法应用与C#实现(1)算法介绍 2.机器学习之PageRank算法应用与C#实现(2)球队排名应用与C#代码 3.机器学习之PageRank算法应用与C#实现(3)球队实力排名应用与C#代码  Pagerank是Google排名运算法则(排名公式)的一部分,是Google用于用来标识网页的等级/重要性的一种方法,是Google用来衡量一个网站的好坏的唯一标准.在揉合了诸如Title

PostgreSQL - 全文检索内置及自定义ranking算法介绍 与案例

标签 PostgreSQL , 全文检索 , ranking 背景 <用PostgreSQL 做实时高效 搜索引擎 - 全文检索.模糊查询.正则查询.相似查询.ADHOC查询> <排序算法>这个章节实际上介绍了PostgreSQL的ranking算法. tsvector将文档分为4层结构:标题.作者.摘要.内容.对这四个层级,用户可以设定对应的weight,用于ranking的计算.同时用户可以设定ranking的修正掩码. 但是只有四个层级,远远不能满足业务需求,那么Postgr

浅析中文分词算法 助力站长更好做优化

分词算法以前偶尔也懂些,但是懂的不透彻,最近看了很多相关的书,然后去互联网上又学习了一部分,算是有了个大概的了解.其实了解分词算法无论对于个人站长一些中小型企业,都十分有帮助.通过这些词的拆分,能让我们对关键词的把握更加的精准.好了,下边开始今天的正文,如果有不对的的地方,还希望大家多指正. 通常的分词算法往往是针对中文搜索引擎而言,对于Google则不存在,在百度和Google上搜索同样一个关键词或者短语,返回的结果是不同的,这不仅仅是算法不同或者技术不同的原因,更多是因为分词算法的存在.百度

排序算法

排序|算法 算法是程序设计的精髓,程序设计的实质就是构造解决问题的算法,将其解释为计算机语言. 在这里您可以了解到: 算法定义 伪代码的使用 算法的复杂性 算法设计策略 常用算法 这里所有的算法都以一种类似Pascal语言的伪代码描述,请参阅伪代码的使用. 新增内容 关于数论的算法--数论基本知识(May 6, 2001)动态规划重新整理 (January 15, 2001)图的深度优先遍历 (January 21, 2001) 图的广度优先遍历 (January 21, 2001)图的拓扑排序

浅谈算法和数据结构 六 符号表及其基本实现

前面几篇文章介绍了基本的排序算法,排序通常是查找的前奏操作.从本文开始介绍基本的查找算法. 在介绍查找算法,首先需要了解符号表这一抽象数据结构,本文首先介绍了什么是符号表,以及这一抽象数据结构的的API,然后介绍了两种简单的符号表的实现方式. 一符号表 在开始介绍查找算法之前,我们需要定义一个名为符号表(Symbol Table)的抽象数据结构,该数据结构类似我们再C#中使用的Dictionary,他是对具有键值对元素的一种抽象,每一个元素都有一个key和value,我们可以往里面添加key,v

Prim算法(三) Java详解

普里姆算法介绍 普里姆(Prim)算法,是用来求加权连通图的最小生成树的算法. 基本思想 对于图G而言,V是所有顶点的集合:现在,设置两个新的集合U和T,其中U用于存放G的最小生成树中的顶点,T存放G的最小生成树中的边.从所有uU,v(V-U) (V-U表示出去U的所有顶点)的边中选取权值最小的边(u, v),将顶点v加入集合U中,将边(u, v)加入集合T中,如此不断重复,直到U=V为止,最小生成树构造完毕,这时集合T中包含了最小生成树中的所有边. 普里姆算法图解 以上图G4为例,来对普里姆进

Prim算法(二) C++详解

普里姆算法介绍 普里姆(Prim)算法,是用来求加权连通图的最小生成树的算法. 基本思想 对于图G而言,V是所有顶点的集合:现在,设置两个新的集合U和T,其中U用于存放G的最小生成树中的顶点,T存放G的最小生成树中的边.从所有uU,v(V-U) (V-U表示出去U的所有顶点)的边中选取权值最小的边(u, v),将顶点v加入集合U中,将边(u, v)加入集合T中,如此不断重复,直到U=V为止,最小生成树构造完毕,这时集合T中包含了最小生成树中的所有边. 普里姆算法图解 以上图G4为例,来对普里姆进

Prim算法(一) C语言详解

普里姆算法介绍 普里姆(Prim)算法,和克鲁斯卡尔算法一样,是用来求加权连通图的最小生成树的算法. 基本思想 对于图G而言,V是所有顶点的集合:现在,设置两个新的集合U和T,其中U用于存放G的最小生成树中的顶点,T存放G的最小生成树中的边.从所有uU,v(V-U) (V-U表示出去U的所有顶点)的边中选取权值最小的边(u, v),将顶点v加入集合U中,将边(u, v)加入集合T中,如此不断重复,直到U=V为止,最小生成树构造完毕,这时集合T中包含了最小生成树中的所有边. 普里姆算法图解 以上图