数据结构例程——应用图的深度优先遍历思路求解问题

本文是[数据结构基础系列(7):图]中第8课时[图的邻接矩阵存储结构及算法]的例程。

(程序中graph.h是图存储结构的“算法库”中的头文件,详情请单击链接…

1、是否有简单路径?
问题:假设图G采用邻接表存储,设计一个算法,判断顶点u到v是否有简单路径。

#include <stdio.h>
#include <malloc.h>
#include "graph.h"
int visited[MAXV];     //定义存放节点的访问标志的全局数组
void ExistPath(ALGraph *G,int u,int v, bool &has)
{
    int w;
    ArcNode *p;
    visited[u]=1;
    if(u==v)
    {
        has=true;
        return;
    }
    p=G->adjlist[u].firstarc;
    while (p!=NULL)
    {
        w=p->adjvex;
        if (visited[w]==0)
            ExistPath(G,w,v,has);
        p=p->nextarc;
    }
}

void HasPath(ALGraph *G,int u,int v)
{
    int i;
    bool flag = false;
    for (i=0; i<G->n; i++)
        visited[i]=0; //访问标志数组初始化
    ExistPath(G,u,v,flag);
    printf(" 从 %d 到 %d ", u, v);
    if(flag)
        printf("有简单路径\n");
    else
        printf("无简单路径\n");
}

int main()
{
    ALGraph *G;
    int A[5][5]=
    {
        {0,0,0,0,0},
        {0,0,1,0,0},
        {0,0,0,1,1},
        {0,0,0,0,0},
        {1,0,0,1,0},
    };  //请画出对应的有向图
    ArrayToList(A[0], 5, G);
    HasPath(G, 1, 0);
    HasPath(G, 4, 1);
    return 0;
}

附:测试图结构及存储

2、输出简单路径
问题:假设图G采用邻接表存储,设计一个算法输出图G中从顶点u到v的一条简单路径(假设图G中从顶点u到v至少有一条简单路径)。

#include <stdio.h>
#include <malloc.h>
#include "graph.h"
int visited[MAXV];     //定义存放节点的访问标志的全局数组
void FindAPath(ALGraph *G,int u,int v,int path[],int d)
{
    //d表示path中的路径长度,初始为-1
    int w,i;
    ArcNode *p;
    visited[u]=1;
    d++;
    path[d]=u;  //路径长度d增1,顶点u加入到路径中
    if (u==v)   //找到一条路径后输出并返回
    {
        printf("一条简单路径为:");
        for (i=0; i<=d; i++)
            printf("%d ",path[i]);
        printf("\n");
        return;         //找到一条路径后返回
    }
    p=G->adjlist[u].firstarc;  //p指向顶点u的第一个相邻点
    while (p!=NULL)
    {
        w=p->adjvex;    //相邻点的编号为w
        if (visited[w]==0)
            FindAPath(G,w,v,path,d);
        p=p->nextarc;   //p指向顶点u的下一个相邻点
    }
}

void APath(ALGraph *G,int u,int v)
{
    int i;
    int path[MAXV];
    for (i=0; i<G->n; i++)
        visited[i]=0; //访问标志数组初始化
    FindAPath(G,u,v,path,-1);  //d初值为-1,调用时d++,即变成了0
}

int main()
{

    ALGraph *G;
    int A[5][5]=
    {
        {0,0,0,0,0},
        {0,0,1,0,0},
        {0,0,0,1,1},
        {0,0,0,0,0},
        {1,0,0,1,0},
    };  //请画出对应的有向图
    ArrayToList(A[0], 5, G);
    APath(G, 1, 0);
    APath(G, 4, 1);
    return 0;
}

3、输出所有路径
问题:输出从顶点u到v的所有简单路径。

#include <stdio.h>
#include <malloc.h>
#include "graph.h"
int visited[MAXV];     //定义存放节点的访问标志的全局数组
void FindPaths(ALGraph *G,int u,int v,int path[],int d)
//d是到当前为止已走过的路径长度,调用时初值为-1
{
    int w,i;
    ArcNode *p;
    visited[u]=1;
    d++;            //路径长度增1
    path[d]=u;              //将当前顶点添加到路径中
    if (u==v && d>1)            //输出一条路径
    {
        printf("  ");
        for (i=0; i<=d; i++)
            printf("%d ",path[i]);
        printf("\n");
    }
    p=G->adjlist[u].firstarc; //p指向u的第一条边
    while(p!=NULL)
    {
        w=p->adjvex;     //w为u的邻接顶点
        if (visited[w]==0)      //若顶点未标记访问,则递归访问之
            FindPaths(G,w,v,path,d);
        p=p->nextarc; //找u的下一个邻接顶点
    }
    visited[u]=0;   //恢复环境
}

void DispPaths(ALGraph *G,int u,int v)
{
    int i;
    int path[MAXV];
    for (i=0; i<G->n; i++)
        visited[i]=0; //访问标志数组初始化
    printf("从%d到%d的所有路径:\n",u,v);
    FindPaths(G,u,v,path,-1);
    printf("\n");
}

int main()
{
    ALGraph *G;
    int A[5][5]=
    {
        {0,1,0,1,0},
        {1,0,1,0,0},
        {0,1,0,1,1},
        {1,0,1,0,1},
        {0,0,1,1,0}
    };  //请画出对应的有向图
    ArrayToList(A[0], 5, G);
    DispPaths(G, 1, 4);
    return 0;
}

附:测试用的图结构、存储结构、运行结果

4、输出一些简单回路
问题:输出图G中从顶点u到v的长度为s的所有简单路径。

#include <stdio.h>
#include <malloc.h>
#include "graph.h"
int visited[MAXV];     //定义存放节点的访问标志的全局数组
void SomePaths(ALGraph *G,int u,int v,int s, int path[],int d)
//d是到当前为止已走过的路径长度,调用时初值为-1
{
    int w,i;
    ArcNode *p;
    visited[u]=1;
    d++;            //路径长度增1
    path[d]=u;              //将当前顶点添加到路径中
    if (u==v && d==s)           //输出一条路径
    {
        printf("  ");
        for (i=0; i<=d; i++)
            printf("%d ",path[i]);
        printf("\n");
    }
    p=G->adjlist[u].firstarc; //p指向u的第一条边
    while(p!=NULL)
    {
        w=p->adjvex;     //w为u的邻接顶点
        if (visited[w]==0)      //若顶点未标记访问,则递归访问之
            SomePaths(G,w,v,s,path,d);
        p=p->nextarc; //找u的下一个邻接顶点
    }
    visited[u]=0;   //恢复环境
}

void DispSomePaths(ALGraph *G,int u,int v, int s)
{
    int i;
    int path[MAXV];
    for (i=0; i<G->n; i++)
        visited[i]=0; //访问标志数组初始化
    printf("从%d到%d长为%d的路径:\n",u,v,s);
    SomePaths(G,u,v,s,path,-1);
    printf("\n");
}

int main()
{
    ALGraph *G;
    int A[5][5]=
    {
        {0,1,0,1,0},
        {1,0,1,0,0},
        {0,1,0,1,1},
        {1,0,1,0,1},
        {0,0,1,1,0}
    };  //请画出对应的有向图
    ArrayToList(A[0], 5, G);
    DispSomePaths(G, 1, 4, 3);
    return 0;
}

附:测试的图结构、运行结果

5、输出通过一个节点的所有简单回路
问题:求图中通过某顶点k的所有简单回路(若存在)

#include <stdio.h>
#include <malloc.h>
#include "graph.h"
int visited[MAXV];       //全局变量
void DFSPath(ALGraph *G,int u,int v,int path[],int d)
//d是到当前为止已走过的路径长度,调用时初值为-1
{
    int w,i;
    ArcNode *p;
    visited[u]=1;
    d++;
    path[d]=u;
    p=G->adjlist[u].firstarc;   //p指向顶点u的第一条边
    while (p!=NULL)
    {
        w=p->adjvex;            //w为顶点u的相邻点
        if (w==v && d>0)        //找到一个回路,输出之
        {
            printf("  ");
            for (i=0; i<=d; i++)
                printf("%d ",path[i]);
            printf("%d \n",v);
        }
        if (visited[w]==0)          //w未访问,则递归访问之
            DFSPath(G,w,v,path,d);
        p=p->nextarc;       //找u的下一个邻接顶点
    }
    visited[u]=0;           //恢复环境:使该顶点可重新使用
}

void FindCyclePath(ALGraph *G,int k)
//输出经过顶点k的所有回路
{
    int path[MAXV],i;
    for (i=0; i<G->n; i++)
        visited[i]=0; //访问标志数组初始化
    printf("经过顶点%d的所有回路\n",k);
    DFSPath(G,k,k,path,-1);
    printf("\n");
}

int main()
{
    ALGraph *G;
    int A[5][5]=
    {
        {0,1,1,0,0},
        {0,0,1,0,0},
        {0,0,0,1,1},
        {0,0,0,0,1},
        {1,0,0,0,0}
    };  //请画出对应的有向图
    ArrayToList(A[0], 5, G);
    FindCyclePath(G, 0);
    return 0;
}

附:测试用图结构、输出结果

时间: 2024-09-05 01:13:34

数据结构例程——应用图的深度优先遍历思路求解问题的相关文章

数据结构例程——应用图的广度优先遍历思路求解问题

本文是[数据结构基础系列(7):图]中第9课时[BFS的应用]的例程. (程序中graph.h是图存储结构的"算法库"中的头文件,详情请单击链接-) 1.最短路径 问题:求不带权连通图G中从顶点u到顶点v的一条最短路径. #include <stdio.h> #include <malloc.h> #include "graph.h" typedef struct { int data; //顶点编号 int parent; //前一个顶点的

无向图的深度遍历-数据结构C语言无向图的深度优先遍历,不知错在那了,遍历不出

问题描述 数据结构C语言无向图的深度优先遍历,不知错在那了,遍历不出 #include #include #define Max 100 #define Wu 0 typedef struct { int vexs[Max]; int arcs[Max][Max]; int vexnum; }MGraph; int visited[Max]; void CreateGraph(MGraph *G,int n) { int i,j,e,u,v,value; for(i=0;i<n;i++) { p

数据结构例程——图的遍历

本文是[数据结构基础系列(7):图]中第6课时[图的遍历]的例程. 1.深度优先遍历--DFS(程序中graph.h是图存储结构的"算法库"中的头文件,详情请单击链接-) #include <stdio.h> #include <malloc.h> #include "graph.h" int visited[MAXV]; void DFS(ALGraph *G, int v) { ArcNode *p; int w; visited[v]=

数据结构实践——迷宫问题之图深度优先遍历解法

本文是针对[数据结构基础系列(7):图]的实践项目. [项目 - 迷宫问题之图深度优先遍历解法] 设计一个程序,采用深度优先遍历算法的思路,解决迷宫问题. (1)建立迷宫对应的图数据结构,并建立其邻接表表示. (2)采用深度优先遍历的思路设计算法,输出从入口(1,1)点到出口(M,N)的所有迷宫路径. [模型建立] 将迷宫中的每一格作为一个顶点,相邻格子可以到达,则对应的顶点之间存在边相连. 例如,下面的迷宫 在使用数组表示时,用0表示格子是空地,用1表示格子处是墙,对应的矩阵是: int mg

数据结构例程——非连通图的遍历

本文是[数据结构基础系列(7):图]中第7课时[非连通图的遍历]的例程. (程序中graph.h是图存储结构的"算法库"中的头文件,详情请单击链接-) 1.非连通图的深度优先遍历--DFS #include <stdio.h> #include <malloc.h> #include "graph.h" int visited[MAXV]; //定义存放节点的访问标志的全局数组 void DFS(ALGraph *G, int v) { Ar

数据结构算法-农夫过河问题用深度优先遍历和广度优先遍历?

问题描述 农夫过河问题用深度优先遍历和广度优先遍历? 农夫过河问题用深度优先遍历和广度优先遍历的区别?用哪个更好? 解决方案 求解这个问题的最简单的方法是一步一步进行试探,每一步都搜索所有可能的选择,对前一步合适的选择再考虑下一步的各种方案. 用计算机实现上述求解的搜索过程可以采用两种不同的策略:一种是广度优先(breadth_first) 搜索,另一种是深度优先(depth_first) . 广度优先: u 广度优先的含义就是在搜索过程中总是首先搜索下面一步的所有可能状态,然后再进一步考虑更后

数据结构例程——用二叉树遍历思想解决问题

本文是数据结构基础系列(6):树和二叉树中第10课时二叉树的遍历的例程. [利用二叉树遍历思想解决问题](请利用二叉树算法库) 假设二叉树采用二叉链存储结构存储,分别实现以下算法,并在程序中完成测试: (1)计算二叉树节点个数: (2)输出所有叶子节点: (3)求二叉树b的叶子节点个数 (4)设计一个算法Level(b,x,h),返回二叉链b中data值为x的节点的层数. (5)判断二叉树是否相似(关于二叉树t1和t2相似的判断:①t1和t2都是空的二叉树,相似:②t1和t2之一为空,另一不为空

算法研究:图的深度优先遍历

图的遍历和树的遍历类似,我们希望从图中某一顶点出发访遍图中其余顶点,且使每一个顶点仅被访问一次,这一过程 就叫做图的遍历(Traverse Graph). 图的遍历方法一般有两种,第一种是深度优先遍历(Depth First Search),也 有称为深度优先搜索,简称为DFS.第二种是<广度优先遍历(Breadth  First Search)>,也有称为广度优先搜索, 简称为BFS.我们在<堆栈与深度优先搜索>中已经较为详细地讲述了深度优先搜索的策略,这里不再赘述.我们也可以把

图的深度优先遍历算法

前言 图的遍历与前面文章中的二叉树遍历还是存在很大区别的.所谓图的遍历指的是从图中的某一个顶点出发访问图中的其余顶点,并且需要保证每个顶点只被访问一次.由于图比二叉树复杂得多,所以前面二叉树的遍历算法在图中是行不通的.因为对于任意一个顶点来讲,都可能与其余的顶点发生连接.如果不对访问的顶点做一些处理,出发重复访问的几率是很高的.因此,一个基本思想是设置一个标记数组,主要用于标记已经被访问过的顶点.图的遍历算法主要有两种:深度优先遍历和广度优先遍历.本篇文章主要介绍的是深度优先遍历算法. 深度优先