关于C++内存中字节对齐问题的详细介绍_C 语言

一、什么是字节对齐
计算机中内存空间都是按照byte划分的,从理论上讲似乎对任何类型的变量的访问可以从任何地址开始,但实际情况是在访问特定类型变量的时候经常在特定的内存地址访问,这就需要各种类型数据按照一定的规则在空间上排列,而不是顺序的一个接一个的排放,这就是对齐。

二、对齐的作用和原因:
1、平台原因(移植原因):不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。各个硬件平台对存储空间的处理上有很大的不同。一些平台对某些特定类型的数据只能从某些特定地址开始存取。比如有些架构的CPU在访问一个没有进行对齐的变量的时候会发生错误,那么在这种架构下编程必须保证字节对齐。

2、性能原因:最常见的是如果不按照适合其平台要求对数据存放进行对齐,会在存取效率上带来损失。数据结构(尤其是栈)应该尽可能地在自然边界上对齐。原因在于,为了访问未对齐的内存,处理器需要作两次内存访问,而对齐的内存访问仅需要一次访问。比如有些平台每次读都是从偶地址开始,如果一个int型(假设为32位系统)如果存放在偶地址开始的地方,那么一个读周期就可以读出这32bit,而如果存放在奇地址开始的地方,就需要2个读周期,并对两次读出的结果的高低字节进行拼凑才能得到该32bit数据。显然在读取效率上下降很多。

三、对齐规则
每个特定平台上的编译器都有自己的默认“对齐系数”(也叫对齐模数)。程序员可以通过预编译命令#pragma pack(n),n=1,2,4,8,16 来改变这一系数,其中的n就是你要指定的“对齐系数”。
规则:
1、
数据成员对齐规则:结构(struct)(或联合(union))的数据成员,第一个数据成员放在offset为0的地方,以后每个数据成员的对齐 按照#pragma pack指定的数值和这个数据成员自身长度中,比较小的那个进行。
2、结构(或联合)的整体对齐规则:在数据成员完成各自对齐之后,结构(或联合)本身也要进行对齐,对齐将按照#pragma pack指定的 数值和结构(或联合)最大数据成员长度中,比较小的那个进行。
3、当#pragma pack的n值等于或超过所有数据成员长度的时候,这个n值的大小将不产生任何效果。

四、请看下面的结构:
 struct MyStruct
{
 double dda1;
 char dda;
int type
};
对结构MyStruct采用sizeof会出现什么结果呢?sizeof(MyStruct)为多少呢?也许你会这样求: sizeof(MyStruct)=sizeof(double)+sizeof(char)+sizeof(int)=13
但是当在VC中测试上面结构的大小时,你会发现sizeof(MyStruct)为16。你知道为什么在VC中会得出这样一个结果吗?
其实,这是VC对变量存储的一个特殊处理。为了提高CPU的存储速度,VC对一些变量的起始地址做了“对齐”处理。在默认情况下,VC规定各成员变量存放的起始地址相对于结构的起始地址的偏移量必须为该变量的类型所占用的字节数的倍数。下面列出常用类型的对齐方式(vc6.0,32位系统)。

类型对齐方式(变量存放的起始地址相对于结构的起始地址的偏移量)
 Char偏移量必须为sizeof(char)即1的倍数
 int 偏移量必须为sizeof(int)即4的倍数
 float 偏移量必须为sizeof(float)即4的倍数
 double偏移量必须为sizeof(double)即8的倍数
 Short 偏移量必须为sizeof(short)即2的倍数

各成员变量在存放的时候根据在结构中出现的顺序依次申请空间,同时按照上面的对齐方式调整位置,空缺的字节VC会自动填充。同时VC为了确保结构的大小为结构的字节边界数(即该结构中占用最大空间的类型所占用的字节数)的倍数,所以在为最后一个成员变量申请空间后,还会根据需要自动填充空缺的字节。

下面用前面的例子来说明VC到底怎么样来存放结构的。
struct MyStruct
{
 double dda1;
 char dda;
int type
};
为上面的结构分配空间的时候,VC根据成员变量出现的顺序和对齐方式,先为第一个成员dda1分配空间,其起始地址跟结构的起始地址相同(刚好偏移量0刚好为sizeof(double)的倍数),该成员变量占用sizeof(double)=8个字节;接下来为第二个成员dda分配空间,这时下一个可以分配的地址对于结构的起始地址的偏移量为8,是sizeof(char)的倍数,所以把dda存放在偏移量为8的地方满足对齐方式,该成员变量占用 sizeof(char)=1个字节;接下来为第三个成员type分配空间,这时下一个可以分配的地址对于结构的起始地址的偏移量为9,不是sizeof (int)=4的倍数,为了满足对齐方式对偏移量的约束问题,VC自动填充3个字节(这三个字节没有放什么东西),这时下一个可以分配的地址对于结构的起始地址的偏移量为12,刚好是sizeof(int)=4的倍数,所以把type存放在偏移量为12的地方,该成员变量占用sizeof(int)=4个字节;这时整个结构的成员变量已经都分配了空间,总的占用的空间大小为:8+1+3+4=16,刚好为结构的字节边界数(即结构中占用最大空间的类型所占用的字节数sizeof(double)=8)的倍数,所以没有空缺的字节需要填充。所以整个结构的大小为:sizeof(MyStruct)=8+1+ 3+4=16,其中有3个字节是VC自动填充的,没有放任何有意义的东西。

下面再举个例子,交换一下上面的MyStruct的成员变量的位置,使它变成下面的情况:
 struct MyStruct
{
 char dda;
 double dda1;
 int type
};

这个结构占用的空间为多大呢?在VC6.0环境下,可以得到sizeof(MyStruc)为24。结合上面提到的分配空间的一些原则,分析下VC怎么样为上面的结构分配空间的。(简单说明)
struct MyStruct
{
char dda;//偏移量为0,满足对齐方式,dda占用1个字节;
double dda1;//下一个可用的地址的偏移量为1,不是sizeof(double)=8的倍数,需要补足7个字节才能使偏移量变为8(满足对齐方式),因此VC自动填充7个字节,dda1存放在偏移量为8的地址上,它占用8个字节。
 int type;//下一个可用的地址的偏移量为16,是sizeof(int)=4的倍数,满足int的对齐方式,所以不需要VC自动填充,type存放在偏移量为16的地址上,它占用4个字节。
};
所有成员变量都分配了空间,空间总的大小为1+7+8+4=20,不是结构的节边界数(即结构中占用最大空间的类型所占用的字节数sizeof(double)=8)的倍数,所以需要填充4个字节,以满足结构的大小为sizeof(double)=8的倍数。所以该结构总的大小为:sizeof(MyStruc)为1+7+8+4+4=24。其中总的有7+4=11个字节是VC自动填充的,没有放任何有意义的东西。

VC对结构的存储的特殊处理确实提高CPU存储变量的速度,但是有时候也带来了一些麻烦,我们也屏蔽掉变量默认的对齐方式,自己可以设定变量的对齐方式。VC 中提供了#pragma pack(n)来设定变量以n字节对齐方式。n字节对齐就是说变量存放的起始地址的偏移量有两种情况:第一、如果n大于等于该变量所占用的字节数,那么偏移量必须满足默认的对齐方式,第二、如果n小于该变量的类型所占用的字节数,那么偏移量为n的倍数,不用满足默认的对齐方式。结构的总大小也有个约束条件,分下面两种情况:如果n大于所有成员变量类型所占用的字节数,那么结构的总大小必须为占用空间最大的变量占用的空间数的倍数;否则必须为n的倍数。

下面举例说明其用法。
#pragma pack(push) //保存对齐状态
#pragma pack(4)//设定为4字节对齐
struct test
{
char m1;
double m4;
 int m3;
};
#pragma pack(pop)//恢复对齐状态
以上结构的大小为16,下面分析其存储情况,首先为m1分配空间,其偏移量为0,满足我们自己设定的对齐方式(4字节对齐),m1占用1个字节。接着开始为 m4分配空间,这时其偏移量为1,需要补足3个字节,这样使偏移量满足为n=4的倍数(因为sizeof(double)大于n),m4占用8个字节。接着为m3分配空间,这时其偏移量为12,满足为4的倍数,m3占用4个字节。这时已经为所有成员变量分配了空间,共分配了16个字节,满足为n的倍数。如果把上面的#pragma pack(4)改为#pragma pack(16),那么我们可以得到结构的大小为24。(请读者自己分析)

五、再看下面这个例子

复制代码 代码如下:

#pragma pack(8)
struct S1
{
char a;
long b;
};
struct S2
{
char c;
struct S1 d;
long long e;
};
#pragma pack(pop)

sizeof(S2)结果为24.。成员对齐有一个重要的条件,即每个成员分别对齐。即每个成员按自己的方式对齐。也就是说上面虽然指定了按8字节对齐,但并不是所有的成员都是以8字节对齐。其对齐的规则是,每个成员按其类型的对齐参数(通常是这个类型的大小)和指定对齐参数(这里是8字节)中较小的一个对齐。并且结构的长度必须为所用过的所有对齐参数的整数倍,不够就补空字节。

S1中,成员a是1字节默认按1字节对齐,指定对齐参数为8,这两个值中取1,a按1字节对齐;成员b是4个字节,默认是按4字节对齐,这时就按4字节对齐,所以sizeof(S1)应该为8;

S2 中,c和S1中的a一样,按1字节对齐,而d 是个结构,它是8个字节,它按什么对齐呢?对于结构来说,它的默认对齐方式就是它的所有成员使用的对齐参数中最大的一个,S1的就是4.所以,成员d就是按4字节对齐。成员e是8个字节,它是默认按8字节对齐,和指定的一样,所以它对到8字节的边界上,这时,已经使用了12个字节了,所以又添加了4个字节的空,从第16个字节开始放置成员e.这时,长度为24,已经可以被8(成员e按8字节对齐)整除。这样,一共使用了24个字节。
a b
S1的内存布局:11**,1111,
c S1.a S1.b d
S2的内存布局:1***,11**,1111,****11111111

这里有三点很重要:
1.每个成员分别按自己的方式对齐,并能最小化长度。
2.复杂类型(如结构)的默认对齐方式是它最长的成员的对齐方式,这样在成员是复杂类型时,可以最小化长度。
3.对齐后的长度必须是成员中最大的对齐参数的整数倍,这样在处理数组时可以保证每一项都边界对齐。

六、sizeof例子(注意:下面的例子都是经过测试验证的)

复制代码 代码如下:

std::cout <<"void* size"<<sizeof(void*)<<std::endl; //4
std::cout <<"char size"<<sizeof(char)<<std::endl; //1
std::cout <<"unsigned char size"<<sizeof(unsigned char)<<std::endl; //1
std::cout <<"short size"<<sizeof(short)<<std::endl; //2
std::cout <<"int size"<<sizeof(int)<<std::endl;//4
std::cout <<"unsigned int size"<<sizeof(unsigned int)<<std::endl; //4
std::cout <<"long size"<<sizeof(long)<<std::endl; //4
std::cout <<"long int size"<<sizeof(long int)<<std::endl; //4
std::cout <<"long long size"<<sizeof(long long)<<std::endl; //8
std::cout <<"float size"<<sizeof(float)<<std::endl; //4
std::cout <<"double size"<<sizeof(double)<<std::endl; //8
std::cout <<"time_t size"<<sizeof(time_t)<<std::endl;//8

char bufc[32];
std::cout <<"bufc size"<<sizeof(bufc)<<std::endl;//32

struct teststruct{};
class testclass{};
std::cout <<"struct size"<<sizeof(teststruct)<<std::endl;//1
std::cout <<"class size"<<sizeof(testclass)<<std::endl;//1

class A
{
char c;
int val;
short sh;
};

class B
{
public:
char c;
int val;
short sh;
void func1(void){};
virtual void func2(void){};
};

std::cout <<"class size A"<<sizeof(A)<<std::endl;//12
std::cout <<"class size B"<<sizeof(B)<<std::endl;//16

char*p =NULL;
p=new char[100];
std::cout <<"size p"<<sizeof(p)<<std::endl;//4

七、其它
1、在编写代码时候可以通过#pragma pack(n),n=1,2,4,8,16来灵活控制内存对齐的系数,当需要关闭内存对齐时,可以使用#pragma pack()实现。
2、注意事项
内存对齐可以大大的提高编译器的处理速度,但不是任何时候都是必需的,有的时候不注意的话,还可能出现意想不到的错误!最典 型的情况就是网络通信程序的编码中,
一定要在定义结构体或者联合之前使用#pragma pack()把内存对齐关闭,这是因为远程主机通 常不知道对方使用的何种对齐方式,通过socket接收的字节流,然后按照字节解析
得到对应的结果,如果使用内存对齐,远程主机很 可能会得到错误的结果!这种情况曾经指导上机时遇到过,而且属于比较隐蔽的错误,debug了好久才发现问题出在这里。
3、优化结构体
虽然内存对齐可以提高运行效率,但是却浪费了内存,在现代PC上通常不会在乎这点小的空间,但是在一些内存很小的嵌入式设备上,可能就要锱铢必较了。其实我们发现在不影响功能的前提下,可以调整成员的顺序来减少“内存空洞”带来的浪费。

时间: 2024-09-20 05:50:19

关于C++内存中字节对齐问题的详细介绍_C 语言的相关文章

c++内存中字节对齐问题详解

一.什么是字节对齐,为什么要对齐?    现代计算机中内存空间都是按照byte划分的,从理论上讲似乎对任何类型的变量的访问可以从任何地址开始,但实际情况是在访问特定类型变量的时候经常在特 定的内存地址访问,这就需要各种类型数据按照一定的规则在空间上排列,而不是顺序的一个接一个的排放,这就是对齐.    对齐的作用和原因:各个硬件平台对存储空间的处理上有很大的不同.一些平台对某些特定类型的数据只能从某些特定地址开始存取.比如有些架构的CPU在访问 一个没有进行对齐的变量的时候会发生错误,那么在这种

C/C++的浮点数在内存中的存储方式分析及实例_C 语言

C/C++的浮点数在内存中的存储方式分析 任何数据在内存中都是以二进制的形式存储的,例如一个short型数据1156,其二进制表示形式为00000100 10000100.则在Intel CPU架构的系统中,存放方式为  10000100(低地址单元) 00000100(高地址单元),因为Intel CPU的架构是小端模式.但是对于浮点数在内存是如何存储的?目前所有的C/C++编译器都是采用IEEE所制定的标准浮点格式,即二进制科学表示法.        在二进制科学表示法中,S=M*2^N 主

C++中抽象类和接口的区别介绍_C 语言

1. 如果一个类B在语法上继承(extend)了类A, 那么在语义上类B是一个类A.2. 如果一个类B在语法上实现了(implement)接口I, 那么类B遵从接口I制定的协议. 使用abstract class的根本原因在于, 人们希望通过这样的方式, 表现不同层次的抽象. 而interface的本质是一套协议. 在程序设计的发展中, 人们又发现接口可以用来表示对行为的抽象, 不过, 这只是interface的一种用法不是其本质. 理论结合实际才是最好的学习方式, 不过在这里, 我只想举一些我

C语言中基础小问题详细介绍_C 语言

1.printf格式输出函数 如果格式控制说明项数多于输出表列个数,则会输出错误数据:如果输出表列个数多于格式控制说明数,则多出数不被输出.%md,m指的是输出字段的宽度.如果输出字段位数小于m,则左端以空格补齐,若大于m,则按照实际位数输出.%-md,基本同上,只不过不同之处在于,空格在右端补齐printf参数可以是常量,变量或表达式,VC++ 6.0中采用从右向左顺序求值,从左向右输出如 复制代码 代码如下: int x = 5; printf("%4d%4d%4d", x, ++

C++中delete和delete[]的区别详细介绍_C 语言

一直对C++中的delete和delete[]的区别不甚了解,今天遇到了,上网查了一下,得出了结论.做个备份,以免丢失. C++告诉我们在回收用 new 分配的单个对象的内存空间的时候用 delete,回收用 new[] 分配的一组对象的内存空间的时候用 delete[]. 关于 new[] 和 delete[],其中又分为两种情况:(1) 为基本数据类型分配和回收空间:(2) 为自定义类型分配和回收空间. 请看下面的程序. 复制代码 代码如下: #include <iostream>; us

C/C++中可变参数的用法详细解析_C 语言

可变参数即表示参数个数可以变化,可多可少,也表示参数的类型也可以变化,可以是int,double还可以是char*,类,结构体等等.可变参数是实现printf(),sprintf()等函数的关键之处,也可以用可变参数来对任意数量的数据进行求和,求平均值带来方便(不然就用数组或每种写个重载).在C#中有专门的关键字parame,但在C,C++并没有类似的语法,不过幸好提供这方面的处理函数,本文将重点介绍如何使用这些函数. 第一步 可变参数表示用三个点-来表示,查看printf()函数和scanf(

c语言中数组名a和&amp;amp;a详细介绍_C 语言

最近又把学习c语言提上日程上来了~~~先把我打算看的书都写下来吧,<C语言深度剖析>,<c和指针>系类,<c语言陷阱和缺陷> 先说说a和&a的区别(有三点,三个方向):1.是a和&a的本质,都是什么类型的.2.从2维数组的角度看.3.从指针运算的角度看. 声明:虽然数组名不是指针,但是用的很像指针,我们暂且把它叫做一个指针吧. 第一个问题:int a[10];  a ,&a和&a[0] 都是分别是什么?先说明a ,&a和&

C++中this指针的用法及介绍_C 语言

this指针只能在一个类的成员函数中调用,它表示当前对象的地址.下面是一个例子:   复制代码 代码如下:      void Date::setMonth( int mn )     {      month = mn; // 这三句是等价的      this->month = mn;      (*this).month = mn;     }   1. this只能在成员函数中使用.全局函数,静态函数都不能使用this.实际上,成员函数默认第一个参数为T* const register

C++中函数模板的用法详细解析_C 语言

定义 我们知道函数的重载可以实现一个函数名多用,将功能相同或者类似函数用同一个名来定义.这样可以简化函数的调用形式,但是程序中,仍然需要分别定义每一个函数. C++提供的函数模板可以更加简化这个过程. 所谓函数模板实际上是建立一个通用函数,其涵涵素类型额形参类型不具体指定,用一个虚拟的类型来代表,这个通用函数就称为函数模板. 凡是函数体相同的函数都可以用这个模板来代替,不必定义多个函数,只需要在模板中定义一次即可.在调用函数时,系统会根据实参的类型来取代模板中的虚拟类型,从而实现了不同函数的功能