Scalaz(38)- Free :Coproduct-Monadic语句组合

 很多函数式编程爱好者都把FP称为Monadic Programming,意思是用Monad进行编程。我想FP作为一种比较成熟的编程模式,应该有一套比较规范的操作模式吧。因为Free能把任何F[A]升格成Monad,所以Free的算式(AST)、算法(Interpreter)关注分离(separation of concern)模式应该可以成为一种规范的FP编程模式。我们在前面的几篇讨论中都涉及了一些AST的设计和运算,但都是一些功能单一,离散的例子。如果希望通过Free获取一个完整可用的程序,就必须想办法把离散的Free AST组合成一体运算。我们先从单一的Free AST例子开始:

1 import scalaz._
 2 import Scalaz._
 3 import scala.language.higherKinds
 4 import scala.language.implicitConversions
 5 object FreeModules {
 6   object FreeInteract {
 7     trait Interact[+A]
 8     type FreeInteract[A] = Free.FreeC[Interact,A]
 9     object Interact {
10       case class Ask(prompt: String) extends Interact[String]
11       case class Tell(msg: String) extends Interact[Unit]
12       implicit def interactToFreeC[A](ia: Interact[A]) = Free.liftFC(ia)
13       object InteractConsole extends (Interact ~> Id) {
14         def apply[A](ia: Interact[A]): Id[A] = ia match {
15           case Ask(p) => println(p); readLine
16           case Tell(m) => println(m)
17         }
18       }
19     }
20     import Interact._
21     val interactScript = for {
22       first <- Ask("What's your first name?")
23       last <- Ask("What's your last name?")
24       _ <- Tell(s"Hello ${first} ${last}, nice to meet you!")
25     } yield ()
26   }
27 }

这是一个我们在前面讨论中重复描述几次的简单交互例子,包括了ADT、AST和Interpreter。我们可以直接运行这个程序:

1 object freePrgDemo extends App {
2   import FreeModules._
3   import FreeInteract._
4   import Interact._
5   Free.runFC(interactScript)(InteractConsole)
6 }

运算结果如下:

1 What's your first name?
2 Tiger
3 What's your last name?
4 Chan
5 Hello Tiger Chan, nice to meet you!

就是简单的两句界面提示和键盘输入,然后提示输入结果,没什么意义。作为测试,我们也可以模拟Console交互:用Map[String,String]来模拟Map[提问,回答],然后把这个Map提供给Interpreter,返回结果(List[String],A),其中List[String]是运行跟踪记录,A是模拟的键盘输入:

 1       type InteractMapTester[A] = Map[String,String] => (List[String], A)
 2       implicit val mapTesterMonad = new Monad[InteractMapTester] {
 3          def point[A](a: => A) = _ => (List(), a)
 4          def bind[A,B](ia: InteractMapTester[A])(f: A => InteractMapTester[B]): InteractMapTester[B] =
 5            m => {
 6              val (o1,a1) = ia(m)
 7              val (o2,a2) = f(a1)(m)
 8              (o1 ++ o2, a2)
 9            }
10       }
11       object InteractTesterMap extends (Interact ~> InteractMapTester) {
12         def apply[A](ia: Interact[A]): InteractMapTester[A] = ia match {
13           case Ask(p) => { m => (List(), m(p)) } //m(p)返回提问对应的答案作为键盘输入
14           case Tell(s) => { m => (List(s), ()) } //List(s)在bind函数中的o1++o2形成跟踪记录
15                                                  //在运算AST时就会调用InteractMapTester的bind函数
16         }
17       }

使用模拟Console的Interpreter来运行:

 1 object freePrgDemo extends App {
 2   import FreeModules._
 3   import FreeInteract._
 4   import Interact._
 5   //Free.runFC(interactScript)(InteractConsole)
 6     val result = Free.runFC(interactScript)(InteractTesterMap).apply(
 7     Map(
 8     "What's your first name?" -> "tiger",
 9     "What's your last name?" -> "chan"
10   ))
11   println(result)
12   }
13 //产生以下输出结果
14 (List(Hello tiger chan, nice to meet you!),())

从mapTesterMonad定义中的bind看到了这句:o1++o2,是Logger的典型特征。那么用Writer能不能实现同等效果呢?我们先看看WriterT:

final case class WriterT[F[_], W, A](run: F[(W, A)]) { self =>
...

实际上这个W就可以满足Logger的功能,因为在WriterT的flatMap中实现了W|+|W:

  def flatMap[B](f: A => WriterT[F, W, B])(implicit F: Bind[F], s: Semigroup[W]): WriterT[F, W, B] =
    flatMapF(f.andThen(_.run))

  def flatMapF[B](f: A => F[(W, B)])(implicit F: Bind[F], s: Semigroup[W]): WriterT[F, W, B] =
    writerT(F.bind(run){wa =>
      val z = f(wa._2)
      F.map(z)(wb => (s.append(wa._1, wb._1), wb._2))
    })

那么如何把Map[提问,回答]传人呢?我们可以通过WriterT[F[_],W,A]的F[]来实现这一目的:

1       type WriterTF[A] = Map[String,String] => A
2       type InteractWriterTester[A] = WriterT[WriterTF,List[String],A]

然后我们可以用WriterT的参数run来传人Map[String,String]:run:WriterTF[(W,A)] == Map[String,String]=>(W,A)。

以下是用WriterT实现的Interpreter版本:

 1       type WriterTF[A] = Map[String,String] => A
 2       type InteractWriterTester[A] = WriterT[WriterTF,List[String],A]
 3       def testerToWriter[A](f: Map[String,String] => (List[String], A)) =
 4         WriterT[WriterTF,List[String],A](f)
 5       implicit val writerTesterMonad = WriterT.writerTMonad[WriterTF, List[String]]
 6       object InteractTesterWriter extends (Interact ~> InteractWriterTester) {
 7         def apply[A](ia: Interact[A]): InteractWriterTester[A] = ia match {
 8           case Ask(p) => testerToWriter { m => (List(), m(p)) }
 9           case Tell(s) => testerToWriter { m => (List(s), ())}
10         }
11       }

我们可以这样运行:

object freePrgDemo extends App {
  import FreeModules._
  import FreeInteract._
  import Interact._
  //Free.runFC(interactScript)(InteractConsole)
  //val result = Free.runFC(interactScript)(InteractTesterMap).apply(
  val result = Free.runFC(interactScript)(InteractTesterWriter).run(
    Map(
    "What's your first name?" -> "tiger",
    "What's your last name?" -> "chan"
  ))
  println(result)

}

我们再设计另一个用户登录Login的例子:

 1   object FreeUserLogin {
 2     import Dependencies._
 3     trait UserLogin[+A]
 4     type FreeUserLogin[A] = Free.FreeC[UserLogin,A]
 5     object UserLogin {
 6       case class Login(user: String, pswd: String) extends UserLogin[Boolean]
 7       implicit def loginToFree[A](ul: UserLogin[A]) = Free.liftFC(ul)
 8       type LoginService[A] = Reader[PasswordControl,A]
 9       object LoginInterpreter extends (UserLogin ~> LoginService) {
10         def apply[A](ul: UserLogin[A]): LoginService[A] = ul match {
11           case Login(u,p) => Reader( cr => cr.matchPassword(u, p))
12         }
13       }
14     }
15     import UserLogin._
16     val loginScript = for {
17       b <- Login("Tiger","1234")
18     } yield b
19   }

这个例子里只有Login一个ADT,它的功能是把输入的User和Password与一个用户登录管理系统内的用户身份信息进行验证。由于如何进行用户密码验证不是这个ADT的功能,它可能涉及另一特殊功能系统的调用,刚好用来做个Reader依赖注入示范。以下是这项依赖定义:

1 object Dependencies {
2   trait PasswordControl {
3     type User = String
4     type Password = String
5     val pswdMap: Map[User, Password]
6     def matchPassword(u: User, p: Password): Boolean
7   }
8 }

对loginScript进行测试运算时必须先获取PasswordControl实例,然后注入运算:

 1   import Dependencies._
 2   import FreeUserLogin._
 3   import UserLogin._
 4   object Passwords extends PasswordControl {  //依赖实例
 5      val pswdMap = Map (
 6        "Tiger" -> "1234",
 7        "John" -> "0332"
 8      )
 9      def matchPassword(u: User, p: Password) = pswdMap.getOrElse(u, p+"!") === p
10   }
11   val result = Free.runFC(loginScript)(LoginInterpreter).run(Passwords)  //注入依赖
12   println(result)

不过即使能够运行,loginScsript的功能明显不完整,还需要像Interact那样的互动部分来获取用户输入信息。那么我们是不是考虑在ADT层次上把Interact和UserLogin合并起来,像这样:

1       case class Ask(prompt: String) extends Interact[String]
2       case class Tell(msg: String) extends Interact[Unit]
3       case class Login(user: String, pswd: String) extends Interact[Boolean]

明显这是可行的。但是,Interact和Login被紧紧捆绑在了一起形成了一个新的ADT。如果我们设计另一个同样需要互动的ADT,我们就需要重复同样的Interact功能设计,显然这样做违背了FP的原则:从功能单一的基本计算开始,按需要对基本函数进行组合实现更复杂的功能。Interact和UserLogin都是基础ADT,从编程语言角度描述Interact和UserLogin属于两种类型的编程语句。我们最终需要的AST是这样的:

1   val interLogin: Free[???, A] = for {
2     user <- Ask("Enter User ID:")  //Free[Interact,A]
3     pswd <- Ask("Enter Password:") //Free[Interact,A]
4     ok <- Login(user,pswd) //Free[UserLogin,A]
5   } yield ok

不过明显类型对不上,因为Interact和UserLogin是两种语句。scalaz的Coproduct类型可以帮助我们实现两种Monadic语句的语义(sematics)合并。Coproduct是这样定义的:scalaz/Coproduct.scala

/** `F` on the left, and `G` on the right, of [[scalaz.\/]].
  *
  * @param run The underlying [[scalaz.\/]]. */
final case class Coproduct[F[_], G[_], A](run: F[A] \/ G[A]) {
  import Coproduct._

  def map[B](f: A => B)(implicit F: Functor[F], G: Functor[G]): Coproduct[F, G, B] =
    Coproduct(run.bimap(F.map(_)(f), G.map(_)(f)))
...

从run:F[A]\/G[A]可以理解Coproduct是两种语句F,G的联合(union)。在我们上面的例子里我们可以用下面的表达方式代表Interact和UserLogin两种语句的联合(union):

1   type InteractLogin[A] = Coproduct[Interact,UserLogin,A]

这是一个语义更广泛的类型:包含了Interact和UserLogin语义。我们可以用Inject类型来把Interact和UserLogin语句集“注入”到一个更大的句集。Inject是这样定义的:scalaz/Inject.scala

/**
 * Inject type class as described in "Data types a la carte" (Swierstra 2008).
 *
 * @see [[http://www.staff.science.uu.nl/~swier004/Publications/DataTypesALaCarte.pdf]]
 */
sealed abstract class Inject[F[_], G[_]] {
  def inj[A](fa: F[A]): G[A]
  def prj[A](ga: G[A]): Option[F[A]]
}

sealed abstract class InjectInstances {
  implicit def reflexiveInjectInstance[F[_]] =
    new Inject[F, F] {
      def inj[A](fa: F[A]) = fa
      def prj[A](ga: F[A]) = some(ga)
    }

  implicit def leftInjectInstance[F[_], G[_]] =
    new Inject[F, ({type λ[α] = Coproduct[F, G, α]})#λ] {
      def inj[A](fa: F[A]) = Coproduct.leftc(fa)
      def prj[A](ga: Coproduct[F, G, A]) = ga.run.fold(some(_), _ => none)
    }

  implicit def rightInjectInstance[F[_], G[_], H[_]](implicit I: Inject[F, G]) =
      new Inject[F, ({type λ[α] = Coproduct[H, G, α]})#λ] {
        def inj[A](fa: F[A]) = Coproduct.rightc(I.inj(fa))
        def prj[A](ga: Coproduct[H, G, A]) = ga.run.fold(_ => none, I.prj(_))
      }
}
...

实现函数inj(fa:F[A]):G[A]代表把F[A]并入G[A]。这里还提供了三个类型的实例:

1、reflexiceInjectInstance[F[_]]:自我注入

2、leftInjectInstance[F[_],G[_]]:把F[A]注入Coproduct[F,G,A]的left(-\/)

3、rightInjectInstance[F[_],G[_],H[_]]:把F[A]注入Coproduct的right(\/-)。需要先把F注入G(inj(F[A]):G[A])

我们可以用implicitly来证明Interact和UserLogin的Inject实例存在:

1   val selfInj = implicitly[Inject[Interact,Interact]]
2   type LeftInterLogin[A] = Coproduct[Interact,UserLogin,A]
3   val leftInj = implicitly[Inject[Interact,LeftInterLogin]]
4   type RightInterLogin[A] = Coproduct[UserLogin,LeftInterLogin,A]
5   val rightInj = implicitly[Inject[Interact,RightInterLogin]]

现在我们需要把Coproduct[F,G,A]的F与G合并然后把F[A]升格成Free[G,A]:

1   object coproduct {
2     def lift[F[_],G[_],A](fa: F[A])(implicit I: Inject[F,G]): Free.FreeC[G,A] = Free.liftFC(I.inj(fa))
3   }

我们可以用这个lift把Interact和UserLogin的ADT统一升格成Free[G,A]:

1   object coproduct {
 2     import FreeInteract._
 3     import Interact._
 4     import FreeUserLogin._
 5     import UserLogin._
 6     def lift[F[_],G[_],A](fa: F[A])(implicit I: Inject[F,G]): Free.FreeC[G,A] = Free.liftFC(I.inj(fa))
 7     class Interacts[G[_]](implicit I: Inject[Interact,G]) {
 8       def ask(prompt: String): Free.FreeC[G,String] = lift(Ask(prompt))
 9       def tell(msg: String): Free.FreeC[G,Unit] = lift(Tell(msg))
10     }
11     class Logins[G[_]](implicit I: Inject[UserLogin,G]) {
12       def login(u: String, p: String): Free.FreeC[G,Boolean] = lift(Login(u,p))
13     }
14   }

我们用lift把基础Interact和UserLogin的语句注入了联合的语句集G[A],然后升格成FreeC[G,A]。现在我们可以把Interact,UserLogin这两种语句用在同一个for-comprehension里了:

1   def loginScript[G[_]](implicit I: Interacts[G], L: Logins[G]) ={
 2     import I._
 3     import L._
 4     for {
 5       uid <- ask("ya id?")
 6       pwd <- ask("password?")
 7       login <- login(uid,pwd)
 8       _ <- if (login) tell("ya lucky bastard!") else tell("geda fk outa here!")
 9     } yield()
10   }

有了Inject和Lift,现在已经成功的用两种ADT集成了一个AST。不过我们还必须提供Interacts[G]和Logins[G]实例:

1 object CoproductModules {
 2   object CoproductFunctions {
 3     import FreeInteract._
 4     import Interact._
 5     import FreeUserLogin._
 6     import UserLogin._
 7     def lift[F[_],G[_],A](fa: F[A])(implicit I: Inject[F,G]): Free.FreeC[G,A] = Free.liftFC(I.inj(fa))
 8     class Interacts[G[_]](implicit I: Inject[Interact,G]) {
 9       def ask(prompt: String): Free.FreeC[G,String] = lift(Ask(prompt))
10       def tell(msg: String): Free.FreeC[G,Unit] = lift(Tell(msg))
11     }
12     object Interacts {
13       implicit def instance[G[_]](implicit I: Inject[Interact,G]) = new Interacts[G]
14     }
15     class Logins[G[_]](implicit I: Inject[UserLogin,G]) {
16       def login(u: String, p: String): Free.FreeC[G,Boolean] = lift(Login(u,p))
17     }
18     object Logins {
19       implicit def instance[G[_]](implicit I: Inject[UserLogin,G]) = new Logins[G]
20     }
21   }

现在我们的语句集(AST)是一个联合的语句集(Coproduct)。那么,我们应该怎么去运算它呢?我们应该如何实现它的Interpreter?现在我们面对的Monadic程序类型是个Coproduct:

1   type InteractLogin[A] = Coproduct[Interact,UserLogin,A]
2   val loginPrg = loginScript[InteractLogin]

现在语句集Interact和UserLogin是分别放在Coproduce的左右两边。那么我们可以历遍这个Coproduct来分别运算Interact和UserLogin语句:

1   def or[F[_],G[_],H[_]](fg: F ~> G, hg: H ~> G): ({type l[x] = Coproduct[F,H,x]})#l ~> G =
2     new (({type l[x] = Coproduct[F,H,x]})#l ~> G) {
3     def apply[A](ca: Coproduct[F,H,A]): G[A] = ca.run match {
4       case -\/(fa) => fg(fa)
5       case \/-(ha) => hg(ha)
6     }
7   }

值得注意的是如果or函数用在Interact和UserLogin上时它们自然转换(NaturalTransformation)的目标类型必须一致,应该是一个更大的类型,而且必须是Monad,这是NaturalTransformation的要求。所以我们可以把InteractInterpreter的转换目标类型由Id变成Reader,也就是LoginInterpreter的转换目标类型:

1   object InteractReader extends (Interact ~> LoginService) {
2     def apply[A](ia: Interact[A]): LoginService[A] = ia match {
3     case Ask(p) => println(p);  Reader(cr => readLine)
4     case Tell(m) => println(m); Reader(cr => ())
5    }
6   }  

好了,现在我们可以这样来测试运算:

1 object freePrgDemo extends App {
 2   import FreeModules._
 3   import FreeInteract._
 4   import Interact._
 5   //Free.runFC(interactScript)(InteractConsole)
 6   //val result = Free.runFC(interactScript)(InteractTesterMap).apply(
 7  /* val result = Free.runFC(interactScript)(InteractTesterWriter).run(
 8     Map(
 9     "What's your first name?" -> "tiger",
10     "What's your last name?" -> "chan"
11   ))
12   println(result)
13   */
14   import Dependencies._
15   import FreeUserLogin._
16   import UserLogin._
17
18   object Passwords extends PasswordControl {
19      val pswdMap = Map (
20        "Tiger" -> "1234",
21        "John" -> "0332"
22      )
23      def matchPassword(u: User, p: Password) = pswdMap.getOrElse(u, p+"!") === p
24   }
25   /*
26   val result = Free.runFC(loginScript)(LoginInterpreter).run(Passwords)
27   println(result)
28   */
29
30   import CoproductDemo._
31   Free.runFC(loginPrg)(or(InteractReader,LoginInterpreter)).run(Passwords)
32 }

我们把密码管理依赖也注入进去了。看看结果:

 1 ya id?
 2 Tiger
 3 password?
 4 2012
 5 geda fk outa here!
 6
 7 ya id?
 8 Tiger
 9 password?
10 1234
11 ya lucky bastard!
12
13 ya id?
14 John
15 password?
16 0332
17 ya lucky bastard!

OK, 把这节示范源代码提供在下面:

 1 package demos
  2 import scalaz._
  3 import Scalaz._
  4 import scala.language.higherKinds
  5 import scala.language.implicitConversions
  6 object FreeModules {
  7   object FreeInteract {
  8     trait Interact[+A]
  9     type FreeInteract[A] = Free.FreeC[Interact,A]
 10     object Interact {
 11       case class Ask(prompt: String) extends Interact[String]
 12       case class Tell(msg: String) extends Interact[Unit]
 13       implicit def interactToFreeC[A](ia: Interact[A]) = Free.liftFC(ia)
 14       object InteractConsole extends (Interact ~> Id) {
 15         def apply[A](ia: Interact[A]): Id[A] = ia match {
 16           case Ask(p) => println(p); readLine
 17           case Tell(m) => println(m)
 18         }
 19       }
 20       type InteractMapTester[A] = Map[String,String] => (List[String], A)
 21       implicit val mapTesterMonad = new Monad[InteractMapTester] {
 22          def point[A](a: => A) = _ => (List(), a)
 23          def bind[A,B](ia: InteractMapTester[A])(f: A => InteractMapTester[B]): InteractMapTester[B] =
 24            m => {
 25              val (o1,a1) = ia(m)
 26              val (o2,a2) = f(a1)(m)
 27              (o1 ++ o2, a2)
 28            }
 29       }
 30       object InteractTesterMap extends (Interact ~> InteractMapTester) {
 31         def apply[A](ia: Interact[A]): InteractMapTester[A] = ia match {
 32           case Ask(p) => { m => (List(), m(p)) } //m(p)返回提问对应的答案作为键盘输入
 33           case Tell(s) => { m => (List(s), ()) } //List(s)在bind函数中的o1++o2形成跟踪记录
 34                                                  //在运算AST时会用到InteractMapTester的bind
 35         }
 36       }
 37       type WriterTF[A] = Map[String,String] => A
 38       type InteractWriterTester[A] = WriterT[WriterTF,List[String],A]
 39       def testerToWriter[A](f: Map[String,String] => (List[String], A)) =
 40         WriterT[WriterTF,List[String],A](f)
 41       implicit val writerTesterMonad = WriterT.writerTMonad[WriterTF, List[String]]
 42       object InteractTesterWriter extends (Interact ~> InteractWriterTester) {
 43         def apply[A](ia: Interact[A]): InteractWriterTester[A] = ia match {
 44           case Ask(p) => testerToWriter { m => (List(), m(p)) }
 45           case Tell(s) => testerToWriter { m => (List(s), ())}
 46         }
 47       }
 48     }
 49     import Interact._
 50     val interactScript = for {
 51       first <- Ask("What's your first name?")
 52       last <- Ask("What's your last name?")
 53       _ <- Tell(s"Hello ${first} ${last}, nice to meet you!")
 54     } yield ()
 55   }
 56   object FreeUserLogin {
 57     import Dependencies._
 58     trait UserLogin[+A]
 59     type FreeUserLogin[A] = Free.FreeC[UserLogin,A]
 60     object UserLogin {
 61       case class Login(user: String, pswd: String) extends UserLogin[Boolean]
 62       implicit def loginToFree[A](ul: UserLogin[A]) = Free.liftFC(ul)
 63       type LoginService[A] = Reader[PasswordControl,A]
 64       object LoginInterpreter extends (UserLogin ~> LoginService) {
 65         def apply[A](ul: UserLogin[A]): LoginService[A] = ul match {
 66           case Login(u,p) => Reader( cr => cr.matchPassword(u, p))
 67         }
 68       }
 69     }
 70     import UserLogin._
 71     val loginScript = for {
 72       b <- Login("Tiger","1234")
 73     } yield b
 74   }
 75 }
 76 object Dependencies {
 77   trait PasswordControl {
 78     type User = String
 79     type Password = String
 80     val pswdMap: Map[User, Password]
 81     def matchPassword(u: User, p: Password): Boolean
 82   }
 83 }
 84 object CoproductDemo {
 85   import FreeModules._
 86   import FreeUserLogin._
 87   import UserLogin._
 88   import FreeInteract._
 89   import Interact._
 90   import Dependencies._
 91   def lift[F[_],G[_],A](fa: F[A])(implicit I: Inject[F,G]): Free.FreeC[G,A] = Free.liftFC(I.inj(fa))
 92   class Interacts[G[_]](implicit I: Inject[Interact,G]) {
 93     def ask(prompt: String) = lift(Ask(prompt))
 94     def tell(msg: String) = lift(Tell(msg))
 95   }
 96   object Interacts {
 97     implicit def instance[F[_]](implicit I: Inject[Interact,F]) = new Interacts[F]
 98   }
 99   class Logins[G[_]](implicit I: Inject[UserLogin,G]) {
100     def login(user: String, pswd: String) = lift(Login(user,pswd))
101   }
102   object Logins {
103     implicit def instance[F[_]](implicit I: Inject[UserLogin,F]) = new Logins[F]
104   }
105   def loginScript[G[_]](implicit I: Interacts[G], L: Logins[G]) ={
106     import I._
107     import L._
108     for {
109       uid <- ask("ya id?")
110       pwd <- ask("password?")
111       login <- login(uid,pwd)
112       _ <- if (login) tell("ya lucky bastard!") else tell("geda fk outa here!")
113     } yield()
114   }
115
116   def or[F[_],G[_],H[_]](fg: F ~> G, hg: H ~> G): ({type l[x] = Coproduct[F,H,x]})#l ~> G =
117     new (({type l[x] = Coproduct[F,H,x]})#l ~> G) {
118     def apply[A](ca: Coproduct[F,H,A]): G[A] = ca.run match {
119       case -\/(fa) => fg(fa)
120       case \/-(ha) => hg(ha)
121     }
122   }
123
124   type InteractLogin[A] = Coproduct[Interact,UserLogin,A]
125   val loginPrg = loginScript[InteractLogin]
126   object InteractReader extends (Interact ~> LoginService) {
127     def apply[A](ia: Interact[A]): LoginService[A] = ia match {
128     case Ask(p) => println(p);  Reader(cr => readLine)
129     case Tell(m) => println(m); Reader(cr => ())
130    }
131   }
132
133 }
134
135 object freePrgDemo extends App {
136   import FreeModules._
137   import FreeInteract._
138   import Interact._
139   //Free.runFC(interactScript)(InteractConsole)
140   //val result = Free.runFC(interactScript)(InteractTesterMap).apply(
141  /* val result = Free.runFC(interactScript)(InteractTesterWriter).run(
142     Map(
143     "What's your first name?" -> "tiger",
144     "What's your last name?" -> "chan"
145   ))
146   println(result)
147   */
148   import Dependencies._
149   import FreeUserLogin._
150   import UserLogin._
151
152   object Passwords extends PasswordControl {
153      val pswdMap = Map (
154        "Tiger" -> "1234",
155        "John" -> "0332"
156      )
157      def matchPassword(u: User, p: Password) = pswdMap.getOrElse(u, p+"!") === p
158   }
159   /*
160   val result = Free.runFC(loginScript)(LoginInterpreter).run(Passwords)
161   println(result)
162   */
163
164   import CoproductDemo._
165   Free.runFC(loginPrg)(or(InteractReader,LoginInterpreter)).run(Passwords)
166 }
时间: 2024-10-26 05:28:12

Scalaz(38)- Free :Coproduct-Monadic语句组合的相关文章

Java编程那些事儿38—break和continue语句

5.5 break和continue语句 break和continue语句是和循环语句紧密相关的两种语句.其中break关键字的意思是中断.打断,continue关键字的意思是继续.使用这两个关键字可以调节循环的执行. 5.5.1break语句 break语句在前面的switch语句中已经介绍过,功能的话是中断switch语句的执行,在循环语句中,break语句的作用也是中断循环语句,也就是结束循环语句的执行. break语句可以用在三种循环语句的内部,功能完全相同.下面以while语句为例来说

Scalaz(14)- Monad:函数组合-Kleisli to Reader

  Monad Reader就是一种函数的组合.在scalaz里函数(function)本身就是Monad,自然也就是Functor和applicative.我们可以用Monadic方法进行函数组合: import scalaz._ import Scalaz._ object decompose { //两个测试函数 val f = (_: Int) + 3 //> f : Int => Int = <function1> val g = (_: Int) * 5 //>

泛函编程(24)-泛函数据类型-Monad, monadic programming

   在上一节我们介绍了Monad.我们知道Monad是一个高度概括的抽象模型.好像创造Monad的目的是为了抽取各种数据类型的共性组件函数汇集成一套组件库从而避免重复编码.这些能对什么是Monad提供一个明确的答案吗?我们先从上节设计的Monad组件库中的一些基本函数来加深一点对Monad的了解: 1 trait Monad[M[_]] extends Functor[M] { 2 def unit[A](a: A): M[A] 3 def flatMap[A,B](ma: M[A])(f:

经典50个SQL语句大全

  50个常用的sql语句 Student(S#,Sname,Sage,Ssex) 学生表 Course(C#,Cname,T#) 课程表 SC(S#,C#,score) 成绩表 Teacher(T#,Tname) 教师表 问题: 1.查询"001"课程比"002"课程成绩高的所有学生的学号; select a.S# from (select s#,score from SC where C#='001') a,(select s#,score from SC wh

SQL 语句大全

一.基础 1.说明:创建数据库 CREATE DATABASE database-name 2.说明:删除数据库 drop database dbname3.说明:备份sql server --- 创建 备份数据的 device USE master EXEC sp_addumpdevice 'disk', 'testBack', 'c:\mssql7backup\MyNwind_1.dat' --- 开始 备份 BACKUP DATABASE pubs TO testBack 4.说明:创建新

SQL语句快速介绍

在做机房收费系统时,因为要查询和处理数据库中的数据,所以用到了大量SQL语句.SQL(Structured Query Language)指结构化查询语言,是用于访问和处理数据库的标准的计算机语言. SQL的作用有很多,包括从数据库中获取数据,插入.更新数据库中的数据,删除数据库记录,创建.修改新数据库,在数据库中创建.删除表等. 本来打算就写几个简单的我常用的语句的介绍,但是写着写着就不会写了,看到了这个快速参考用的表,就想将他加以整理,这样也很清晰.这些资料都是原有的,我只是加以整理.整合.

《迷人的8051单片机》---3.2 语句

3.2 语句 C语言用语句来向计算机发出操作指令.一个C语句经编译后,可以生成若干条机器指令,它是构成函数的基础.C语言的语句可以分为控制语句.函数调用语句.复合语句.表达式语句以及空语句等多种.以下我们主要介绍的是C语言的控制语句,这种语句具有相对固定的格式,用来实现某种特定的功能. 3.2.1 控制语句 C语言有9种控制语句,可分成以下3类: 1)循环执行语句: while语句.do-while语句.for语句. 2)条件判断语句:if语句.switch语句. 3)转向语句:break语句.

实用SQL语句大全

mysql_escape_string() 本函数将 unescaped_string 转义,使之可以安全用于 mysql_query(). 注: mysql_escape_string() 并不转义 % 和 _.   本函数和 mysql_real_escape_string() 完全一样,除了 mysql_real_escape_string() 接受的是一个连接句柄并根据当前字符集转移字符串之外.mysql_escape_string() 并不接受连接参数,也不管当前字符集设定. 一.基础

[JavaScript] 泛&amp;#183;易&amp;#183;简:JS 语句

JavaScript 语句 JavaScript 语句向浏览器发出的命令.语句的作用是告诉浏览器该做什么. 下面的 JavaScript 语句向 id="demo" 的 HTML 元素输出文本 "Hello World": <span style="font-size:18px;"><span style="font-size:18px;"><span style="font-size: