Logistic Regression & Least Square Probability Classification
1. Logistic Regression
Likelihood function, as interpreted by wikipedia:
plays one of the key roles in statistic inference, especially methods of estimating a parameter from a set of statistics. In this article, we’ll make full use of it.
Pattern recognition works on the way that learning the posterior probability p(y|x) of pattern x belonging to class y. In view of a pattern x, when the posterior probability of one of the class y achieves the maximum, we can take x for class y, i.e.
y^=argmaxy=1,…,cp(u|x)
The posterior probability can be seen as the credibility of model x belonging to class y.
In Logistic regression algorithm, we make use of linear logarithmic function to analyze the posterior probability:
q(y|x,θ)=exp(∑bj=1θ(y)jϕj(x))∑cy′=1exp(∑bj=1θ(y′)jϕj(x))
Note that the denominator is a kind of regularization term. Then the Logistic regression is defined by the following optimal problem:
maxθ∑i=1mlogq(yi|xi,θ)
We can solve it by gradient descent method:
- Initialize θ.
- Pick up a training sample (xi,yi) randomly.
- Update θ=(θ(1)T,…,θ(c)T)T along the direction of gradient ascent:
θ(y)←θ(y)+ϵ∇yJi(θ),y=1,…,c
where
∇yJi(θ)=−exp(θ(y)Tϕ(xi))ϕ(xi)∑cy′=1exp(θ(y′)Tϕ(xi))+{ϕ(xi)0(y=yi)(y≠yi) - Go back to step 2,3 until we get a θ of suitable precision.
Take the Gaussian Kernal Model as an example:
q(y|x,θ)∝exp⎛⎝∑j=1nθjK(x,xj)⎞⎠
Aren’t you familiar with Gaussian Kernal Model? Refer to this article:
Here are the corresponding MATLAB codes:
n=90; c=3; y=ones(n/c,1)*(1:c); y=y(:);
x=randn(n/c,c)+repmat(linspace(-3,3,c),n/c,1);x=x(:);
hh=2*1^2; t0=randn(n,c);
for o=1:n*1000
i=ceil(rand*n); yi=y(i); ki=exp(-(x-x(i)).^2/hh);
ci=exp(ki'*t0); t=t0-0.1*(ki*ci)/(1+sum(ci));
t(:,yi)=t(:,yi)+0.1*ki;
if norm(t-t0)<0.000001
break;
end
t0=t;
end
N=100; X=linspace(-5,5,N)';
K=exp(-(repmat(X.^2,1,n)+repmat(x.^2',N,1)-2*X*x')/hh);
figure(1); clf; hold on; axis([-5,5,-0.3,1.8]);
C=exp(K*t); C=C./repmat(sum(C,2),1,c);
plot(X,C(:,1),'b-');
plot(X,C(:,2),'r--');
plot(X,C(:,3),'g:');
plot(x(y==1),-0.1*ones(n/c,1),'bo');
plot(x(y==2),-0.2*ones(n/c,1),'rx');
plot(x(y==3),-0.1*ones(n/c,1),'gv');
legend('q(y=1|x)','q(y=2|x)','q(y=3|x)');
2. Least Square Probability Classification
In LS probability classifiers, linear parameterized model is used to express the posterior probability:
q(y|x,θ(y))=∑j=1bθ(y)jϕj(x)=θ(y)Tϕ(x),y=1,…,c
These models depends on the parameters θ(y)=(θ(y)1,…,θ(y)b)T correlated to each classes y that is diverse from the one used by Logistic classifiers. Learning those models means to minimize the following quadratic error:
Jy(θ(y))==12∫(q(y|x,θ(y))−p(y|x))2p(x)dx12∫q(y|x,θ(y))2p(x)dx−∫q(y|x,θ(y))p(y|x)p(x)dx+12∫p(y|x)2p(x)dx
where p(x) represents the probability density of training set {xi}ni=1.
By the Bayesian formula,
p(y|x)p(x)=p(x,y)=p(x|y)p(y)
Hence Jy can be reformulated as
Jy(θ(y))=12∫q(y|x,θ(y))2p(x)dx−∫q(y|x,θ(y))p(x|y)p(y)dx+12∫p(y|x)2p(x)dx
Note that the first term and second term in the equation above stand for the mathematical expectation of p(x) and p(x|y) respectively, which are often impossible to calculate directly. The last term is independent of θ and thus can be omitted.
Due to the fact that p(x|y) is the probability density of sample x belonging to class y, we are able to estimate term 1 and 2 by the following averages:
1n∑i=1nq(y|xi,θ(y))2,1ny∑i:yi=yq(y|xi,θ(y))p(y)
Next, we introduce the regularization term to get the following calculation rule:
J^y(θ(y))=12n∑i=1nq(y|xi,θ(y))2−1ny∑i:yi=yq(y|xi,θ(y))+λ2n∥θ(y)∥2
Let π(y)=(π(y)1,…,π(y)n)T and π(y)i={1(yi=y)0(yi≠y), then
J^y(θ(y))=12nθ(y)TΦTΦθ(y)−1nθ(y)TΦTπ(y)+λ2n∥θ(y)∥2
.
Therefore, it is evident that the problem above can be formulated as a convex optimization problem, and we can get the analytic solution by setting the twice order derivative to zero:
θ^(y)=(ΦTΦ+λI)−1ΦTπ(y)
.
In order not to get a negative estimation of the posterior probability, we need to add a constrain on the negative outcome:
p^(y|x)=max(0,θ^(y)Tϕ(x))∑cy′=1max(0,θ^(y′)Tϕ(x))
We also take Gaussian Kernal Models for example:
n=90; c=3; y=ones(n/c,1)*(1:c); y=y(:);
x=randn(n/c,c)+repmat(linspace(-3,3,c),n/c,1);x=x(:);
hh=2*1^2; x2=x.^2; l=0.1; N=100; X=linspace(-5,5,N)';
k=exp(-(repmat(x2,1,n)+repmat(x2',n,1)-2*x*(x'))/hh);
K=exp(-(repmat(X.^2,1,n)+repmat(x2',N,1)-2*X*(x'))/hh);
for yy=1:c
yk=(y==yy); ky=k(:,yk);
ty=(ky'*ky +l*eye(sum(yk)))\(ky'*yk);
Kt(:,yy)=max(0,K(:,yk)*ty);
end
ph=Kt./repmat(sum(Kt,2),1,c);
figure(1); clf; hold on; axis([-5,5,-0.3,1.8]);
C=exp(K*t); C=C./repmat(sum(C,2),1,c);
plot(X,C(:,1),'b-');
plot(X,C(:,2),'r--');
plot(X,C(:,3),'g:');
plot(x(y==1),-0.1*ones(n/c,1),'bo');
plot(x(y==2),-0.2*ones(n/c,1),'rx');
plot(x(y==3),-0.1*ones(n/c,1),'gv');
legend('q(y=1|x)','q(y=2|x)','q(y=3|x)');
3. Summary
Logistic regression is good at dealing with sample set with small size since it works in a simple way. However, when the number of samples is large to some degree, it is better to turn to the least square probability classifiers.