必看 :大数据挖掘中易犯的11大错误

0.缺乏数据(LackData)

对于分类问题或预估问题来说,常常缺乏准确标注的案例。

例如:

欺诈侦测(FraudDetection):在上百万的交易中,可能只有屈指可数的欺诈交易,还有很多的欺诈交易没有被正确标注出来,这就需要在建模前花费大量人力来修正。

信用评分(CreditScoring):需要对潜在的高风险客户进行长期跟踪(比如两年),从而积累足够的评分样本。

1.太关注训练(FocusonTraining)

IDMer:就象体育训练中越来越注重实战训练,因为单纯的封闭式训练常常会训练时状态神勇,比赛时一塌糊涂。

实际上,只有样本外数据上的模型评分结果才真正有用!(否则的话,直接用参照表好了!)

癌症检测(Cancerdetection):MDAnderson的医生和研究人员(1993)使用神经网络来进行癌症检测,惊奇地发现,训练时间越长(从几天延长至数周),对训练集的性能改善非常轻微,但在测试集上的性能却明显下降。

机器学习或计算机科学研究者常常试图让模型在已知数据上表现最优,这样做的结果通常会导致过度拟合(overfit)。

  解决方法:

解决这个问题的典型方法是重抽样(Re-Sampling)。重抽样技术包括:bootstrap、cross-validation、jackknife、leave-one-out…等等。

2.只依赖一项技术(RelyonOneTechnique)

IDMer:这个错误和第10种错误有相通之处,请同时参照其解决方法。没有对比也就没有所谓的好坏,辩证法的思想在此体现无遗。

“当小孩子手拿一把锤子时,整个世界看起来就是一枚钉子。”要想让工作尽善尽美,就需要一套完整的工具箱。

不要简单地信赖你用单个方法分析的结果,至少要和传统方法(比如线性回归或线性判别分析)做个比较。

研究结果:按照《神经网络》期刊的统计,在过去3年来,只有1/6的文章中做到了上述两点。也就是说,在独立于训练样本之外的测试集上进行了开集测试,并与其它广泛采用的方法进行了对比。

使用一系列好的工具和方法。(每种工具或方法可能最多带来5%~10%的改进)。

3.提错了问题(AsktheWrongQuestion)

IDMer:一般在分类算法中都会给出分类精度作为衡量模型好坏的标准,但在实际项目中我们却几乎不看这个指标。为什么?因为那不是我们关注的目标。

a)项目的目标:一定要锁定正确的目标

欺诈侦测(关注的是正例!)(Shannon实验室在国际长途电话上的分析):不要试图在一般的通话中把欺诈和非欺诈行为分类出来,重点应放在如何描述正常通话的特征,然后据此发现异常通话行为。

b)模型的目标:让计算机去做你希望它做的事

大多数研究人员会沉迷于模型的收敛性来尽量降低误差,这样让他们可以获得数学上的美感。但更应该让计算机做的事情应该是如何改善业务,而不是仅仅侧重模型计算上的精度。

4.只靠数据来说话(Listen(only)totheData)

IDMer:“让数据说话”没有错,关键是还要记得另一句话:兼听则明,偏听则暗!如果数据+工具就可以解决问题的话,还要人做什么呢?

4a.投机取巧的数据:数据本身只能帮助分析人员找到什么是显著的结果,但它并不能告诉你结果是对还是错。

4b.经过设计的实验:某些实验设计中掺杂了人为的成分,这样的实验结果也常常不可信。

5.使用了未来的信息(AcceptLeaksfromtheFuture)

IDMer:看似不可能,却是实际中很容易犯的错误,特别是你面对成千上万个变量的时候。认真、仔细、有条理是数据挖掘人员的基本要求。

预报(Forecast)示例:预报芝加哥银行在某天的利率,使用神经网络建模,模型的准确率达到95%。但在模型中却使用了该天的利率作为输入变量。

金融业中的预报示例:使用3日的移动平均来预报,但却把移动平均的中点设在今天。

要仔细查看那些让结果表现得异常好的变量,这些变量有可能是不应该使用,或者不应该直接使用的。

给数据加上时间戳,避免被误用。

6.抛弃了不该忽略的案例(DiscountPeskyCases)

IDMer:到底是“宁为鸡头,不为凤尾”,还是“大隐隐于市,小隐隐于野”?不同的人生态度可以有同样精彩的人生,不同的数据也可能蕴含同样重要的价值。

异常值可能会导致错误的结果(比如价格中的小数点标错了),但也可能是问题的答案(比如臭氧洞)。所以需要仔细检查这些异常。

研究中最让激动的话语不是“啊哈!”,而是“这就有点奇怪了……”

数据中的不一致性有可能会是解决问题的线索,深挖下去也许可以解决一个大的业务问题。

在直邮营销中,在对家庭地址的合并和清洗过程中发现的数据不一致,反而可能是新的营销机会。

可视化可以帮助你分析大量的假设是否成立。

7.轻信预测(Extrapolate)

IDMer:依然是辩证法中的观点,事物都是不断发展变化的。

人们常常在经验不多的时候轻易得出一些结论。

即便发现了一些反例,人们也不太愿意放弃原先的想法。

维度咒语:在低维度上的直觉,放在高维度空间中,常常是毫无意义的。

进化论。没有正确的结论,只有越来越准确的结论。

8.试图回答所有问题(AnswerEveryInquiry)

IDMer:有点像我爬山时鼓励自己的一句话“我不知道什么时候能登上山峰,但我知道爬一步就离终点近一步。”

“不知道”是一种有意义的模型结果。

模型也许无法100%准确回答问题,但至少可以帮我们估计出现某种结果的可能性。

9.随便地进行抽样(SampleCasually)

9a降低抽样水平。例如,MD直邮公司进行响应预测分析,但发现数据集中的不响应客户占比太高(总共一百万直邮客户,其中超过99%的人未对营销做出响应)。于是建模人员做了如下抽样:把所有响应者放入样本集,然后在所有不响应者中进行系统抽样,即每隔10人抽一个放入样本集,直到样本集达到10万人。但模型居然得出如下规则:凡是居住在Ketchikan、Wrangell和WardCoveAlaska的人都会响应营销。这显然是有问题的结论。(问题就出在这种抽样方法上,因为原始数据集已经按照邮政编码排序,上面这三个地区中不响应者未能被抽取到样本集中,故此得出了这种结论)。

解决方法:“喝前摇一摇!”先打乱原始数据集中的顺序,从而保证抽样的随机性。

9b提高抽样水平。例如,在信用评分中,因为违约客户的占比一般都非常低,所以在建模时常常会人为调高违约客户的占比(比如把这些违约客户的权重提高5倍)。建模中发现,随着模型越来越复杂,判别违约客户的准确率也越来越高,但对正常客户的误判率也随之升高。(问题出在数据集的划分上。在把原始数据集划分为训练集和测试集时,原始数据集中违约客户的权重已经被提高过了)

  解决方法:先进行数据集划分,然后再提高训练集中违约客户的权重。

10.太相信最佳模型(BelievetheBestModel)

IDMer:还是那句老话-“没有最好,只有更好!”

可解释性并不一定总是必要的。看起来并不完全正确或者可以解释的模型,有时也会有用。

“最佳”模型中使用的一些变量,会分散人们太多的注意力。(不可解释性有时也是一个优点)

一般来说,很多变量看起来彼此都很相似,而最佳模型的结构看上去也千差万别,无迹可循。但需注意的是,结构上相似并不意味着功能上也相似。

解决方法:把多个模型集装起来可能会带来更好更稳定的结果。 

本文转自d1net(转载)

时间: 2024-12-04 10:52:21

必看 :大数据挖掘中易犯的11大错误的相关文章

数据挖掘中易犯的11大错误

按照Elder博士的总结,这10大易犯错误包括: 0. 缺乏数据(Lack Data) 1. 太关注训练(Focus on Training) 2. 只依赖一项技术(Rely on One Technique) 3. 提错了问题(Ask the Wrong Question) 4. 只靠数据来说话(Listen (only) to the Data) 5. 使用了未来的信息(Accept Leaks from the Future) 6. 抛弃了不该忽略的案例(Discount Pesky Ca

安全应急响应工作中易犯的5大错误

本文讲的是 安全应急响应工作中易犯的5大错误,转行或开启一份新工作的最大挑战之一,不是了解该做什么,而是学会不能做什么. 人非圣贤,孰能无过?但在安全行业,小过失往往造成大损失.下面是安全响应中一些常见的错误,以及安全专家给出的真知灼见. 无准备 对没准备的公司,发现自己被攻击的事实可能会带来恐慌.无效响应和难以承受的账单.你知道攻击事件中得弄清哪些问题,不妨设置好整体计划以应对这些问题,有备无患. 比如说:哪些数据被盗了?攻击者是怎么进到公司网络的?他们在公司网络中畅游多久了?都有哪些系统被他

社会化SEO中易犯的4个错误

首先,当然需要知道什么是社会化SEO,很简单,根据字面意思就知道,是社会化媒体营销和SEO的结合体,这种整合营销的威力可能会远远超过一些http://www.aliyun.com/zixun/aggregation/38848.html">营销人员的想象的.在线营销没有成果的话,那就表示你的行动不正确,没有恰当的利用好各种平台资源,从而导致品牌的信息战略显得无力而困惑. 你要意识到社交媒体营销和SEO是"手牵着手"的,有一些易犯的错误需要注意,这里就介绍4个社会化SEO

大数据挖掘中的三种角色

我对数据挖掘和机器学习是新手,从去年7月份在Amazon才开始接触,而且还是因为工作需要被动接触的,以前都没有接触过,做的是需求预测机器学习相关的.后来,到了淘宝后,自己凭兴趣主动地做了几个月的和用户地址相关数据挖掘上的工作,有一些浅薄的心得.不管怎么样,欢迎指教和讨论. 另外,注明一下,这篇文章的标题模仿了一个美剧<权力的游戏:冰与火之歌>.在数据的世界里,我们看到了很多很牛,很强大也很有趣的案例.但是,数据就像一个王座一样,像征着一种权力和征服,但登上去的路途一样令人胆颤. 大数据挖掘中的

外包企业在信息安全管理中易犯的一些误区(1)

以下的文章主要向大家讲述的是外包企业在信息安全管理中的一些误区,自从商务部推出服务外包"大气势工程"之后,在政府政策的大力扶持之下,国内外包产业发展的如雨后春竹,为了能够承接更多高端服务.满足客户的要求,商务部同时鼓励外包企业通过国际认证以获得更好的竞争力和良好的企业形象.比特网专家特稿:自从商务部推出服务外包"千百十工程"之后,在政府政策的大力扶持之下,国内外包产业发展的如火如荼,为了能够承接更多高端服务,满足客户的要求,商务部同时鼓励外包企业通过国际认证以获得更

初创公司营销过程中易犯的7个致命错误

中介交易 SEO诊断 淘宝客 云主机 技术大厅 北京时间9月4日消息,据国外媒体报道,Steli 是销售服务公司ElasticSales的联合创始人兼首席布道师,同时也兼任多家初创公司和企业人的销售顾问,以下是他以初创公司的营销业务为主题撰写的一篇文章. 初创公司营销过程中易犯的7个致命错误(腾讯科技配图) ElasticSales有幸为硅谷多家热门的初创公司服务过,帮助他们开展.运营公司的营销活动.每一周,我们都会和多家初创公司展开讨论,以了解这些销售团队所面临的挑战有哪些.在多次的服务过程中

5种易犯的PHP数据库错误

 5种易犯的PHP数据库错误---包括数据库模式设计.数据库访问和使用数据库的业务逻辑代码---以及它们的解决方案. 如果只有一种 方式使用数据库是正确的--  您可以用很多的方式创建数据库设计.数据库访问和基于数据库的 PHP 业务逻辑代码,但最终一般以错误告终.本文说明了数据库设计和访问数据库的 PHP 代码中出现的五个常见问题,以及在遇到这些问题时如何修复它们. 问题 1:直接使用 MySQL 一个常见问题是较老的 PHP 代码直接使用 mysql_ 函数来访问数据库.清单 1 展示了如何

将数据中心迁移到云时易犯的10个错误

从前不久的数据来看,虽然25%的企业还在评估云服务是否可以在日常生产环境中为他们工作,以及他们的公司数据在云中是否安全. 但是,对于云服务提供商存储和保护关键业务信息的态度已经发生了变化. 根据IDG企业调查显示,一些企业预计到2017年年底会将其59%的IT环境迁移到云.对于企业机构而言,这是一个令人印象深刻的数字,但也不是那么简单的,因为会出现更多的挑战, 有许多预防措施是一定要考虑的,它是一个彻底的,多步骤的过程.一步做不好就有可能导致事情的失败.将企业的数据中心资产移到云计算平台需要大量

十个JavaScript中易犯的小错误,你中了几枪?

在今天,JavaScript已经成为了网页编辑的核心.尤其是过去的几年,互联网见-证了在SPA开发.图形处理.交互等方面大量JS库的出现. 如果初次打交道,很多人会觉得js很简单.确实,对于很多有经验的工程师,或者甚至是初学者而言,实现基本的js功能几乎 毫无障碍.但是JS的真实功能却比很多人想象的要更加多样.复杂.JavaScript的许多细节规定会让你的网页出现很多意想不到的bug,搞懂这些 bug,对于成为一位有经验的JS开发者很重要. 常见错误一:对于this关键词的不正确引用 我曾经听