【题目】
There are N gas stations along a circular route, where the amount of gas at station i is gas[i]
.
You have a car with an unlimited gas tank and it costs cost[i]
of gas
to travel from station i to its next station (i+1). You begin the journey with an empty tank at one of the gas stations.
Return the starting gas station's index if you can travel around the circuit once, otherwise return -1.
Note:
The solution is guaranteed to be unique
【题意】
在环形路线上一共有N个加油站,每个加油站的存储容量为gas[i]
.你有一辆汽油无限存储的汽车,如果你从加油站i到下一站(i+1),你需要
消耗汽油cost[i] 你从某一个加油站开始你的旅程,但是你的汽车里没有任何的汽油。
如果你能沿着环形路线旅游一遍,返回你开始旅游的加油站的下标否则返回-1
注意:
解决方案唯一
【分析】
首先想到的是 O(N^2)的解法,对每个点进行模拟。
O(N) 的解法是,设置两个变量,sum 判断当前的指针的有效性;total 则判断整个数组是否有
解,有就返回通过 sum 得到的下标,没有则返回 -1
如果total>=0即(gas[0] - cost[0])+........+(gas[n] - cost[n]) >= 0则肯定有一个解。
【代码】
/********************************* * 日期:2014-01-25 * 作者:SJF0115 * 题号: Gas Station * 来源:http://oj.leetcode.com/problems/gas-station/ * 结果:AC * 来源:LeetCode * 总结: **********************************/ #include <iostream> #include <stdio.h> #include <vector> using namespace std; // 时间复杂度 O(n),空间复杂度 O(1) class Solution { public: int canCompleteCircuit(vector<int> &gas, vector<int> &cost) { int total = 0; int j = -1; for (int i = 0, sum = 0; i < gas.size(); ++i) { sum += gas[i] - cost[i]; total += gas[i] - cost[i]; if (sum < 0) { j = i; sum = 0; } } return total >= 0 ? j + 1 : -1; } }; int main() { Solution solution; int result; vector<int> gas = {0,4,5}; vector<int> cost = {1,2,6}; result = solution.canCompleteCircuit(gas,cost); printf("Result:%d\n",result); return 0; }