开源日志系统比较

原文地址:http://www.cnblogs.com/ibook360/p/3159544.html

1. 背景介绍

 

许多公司的平台每天会产生大量的日志(一般为流式数据,如,搜索引擎的pv,查询等),处理这些日志需要特定的日志系统,一般而言,这些系统需要具有以下特征:

(1) 构建应用系统和分析系统的桥梁,并将它们之间的关联解耦;

(2) 支持近实时的在线分析系统和类似于Hadoop之类的离线分析系统;

(3) 具有高可扩展性。即:当数据量增加时,可以通过增加节点进行水平扩展。

本文从设计架构,负载均衡,可扩展性和容错性等方面对比了当今开源的日志系统,包括facebook的scribe,apache的chukwa,linkedin的kafka和cloudera的flume等。

2. FaceBook的Scribe

Scribe是facebook开源的日志收集系统,在facebook内部已经得到大量的应用。它能够从各种日志源上收集日志,存储到一个中央存储系统 (可以是NFS,分布式文件系统等)上,以便于进行集中统计分析处理。它为日志的“分布式收集,统一处理”提供了一个可扩展的,高容错的方案。

它最重要的特点是容错性好。当后端的存储系统crash时,scribe会将数据写到本地磁盘上,当存储系统恢复正常后,scribe将日志重新加载到存储系统中。

架构

scribe的架构比较简单,主要包括三部分,分别为scribe agent, scribe和存储系统。

(1) scribe agent

scribe agent实际上是一个thrift client。 向scribe发送数据的唯一方法是使用thrift client, scribe内部定义了一个thrift接口,用户使用该接口将数据发送给server。

(2) scribe

scribe接收到thrift client发送过来的数据,根据配置文件,将不同topic的数据发送给不同的对象。scribe提供了各种各样的store,如 file, HDFS等,scribe可将数据加载到这些store中。

(3) 存储系统

存储系统实际上就是scribe中的store,当前scribe支持非常多的store,包括file(文件),buffer(双层存储,一个主储存,一个副存储),network(另一个scribe服务器),bucket(包含多个 store,通过hash的将数据存到不同store中),null(忽略数据),thriftfile(写到一个Thrift TFileTransport文件中)和multi(把数据同时存放到不同store中)。

3. Apache的Chukwa

chukwa是一个非常新的开源项目,由于其属于hadoop系列产品,因而使用了很多hadoop的组件(用HDFS存储,用mapreduce处理数据),它提供了很多模块以支持hadoop集群日志分析。

需求:

(1) 灵活的,动态可控的数据源

(2) 高性能,高可扩展的存储系统

(3) 合适的框架,用于对收集到的大规模数据进行分析

架构

Chukwa中主要有3种角色,分别为:adaptor,agent,collector。

(1) Adaptor 数据源

可封装其他数据源,如file,unix命令行工具等

目前可用的数据源有:hadoop logs,应用程序度量数据,系统参数数据(如linux cpu使用流率)。

(2) HDFS 存储系统

Chukwa采用了HDFS作为存储系统。HDFS的设计初衷是支持大文件存储和小并发高速写的应用场景,而日志系统的特点恰好相反,它需支持高并发低速率的写和大量小文件的存储。需要注意的是,直接写到HDFS上的小文件是不可见的,直到关闭文件,另外,HDFS不支持文件重新打开。

(3) Collector和Agent

为了克服(2)中的问题,增加了agent和collector阶段。

Agent的作用:给adaptor提供各种服务,包括:启动和关闭adaptor,将数据通过HTTP传递给Collector;定期记录adaptor状态,以便crash后恢复。

Collector的作用:对多个数据源发过来的数据进行合并,然后加载到HDFS中;隐藏HDFS实现的细节,如,HDFS版本更换后,只需修改collector即可。

(4) Demux和achieving

直接支持利用MapReduce处理数据。它内置了两个mapreduce作业,分别用于获取data和将data转化为结构化的log。存储到data store(可以是数据库或者HDFS等)中。

4. LinkedIn的Kafka

Kafka是2010年12月份开源的项目,采用scala语言编写,使用了多种效率优化机制,整体架构比较新颖(push/pull),更适合异构集群。

设计目标:

(1) 数据在磁盘上的存取代价为O(1)

(2) 高吞吐率,在普通的服务器上每秒也能处理几十万条消息

(3) 分布式架构,能够对消息分区

(4) 支持将数据并行的加载到hadoop


架构

Kafka实际上是一个消息发布订阅系统。producer向某个topic发布消息,而consumer订阅某个topic的消息,进而一旦有新的关于某个topic的消息,broker会传递给订阅它的所有consumer。 在kafka中,消息是按topic组织的,而每个topic又会分为多个partition,这样便于管理数据和进行负载均衡。同时,它也使用了zookeeper进行负载均衡。

Kafka中主要有三种角色,分别为producer,broker和consumer。

(1) Producer

Producer的任务是向broker发送数据。Kafka提供了两种producer接口,一种是low_level接口,使用该接口会向特定的broker的某个topic下的某个partition发送数据;另一种那个是high level接口,该接口支持同步/异步发送数据,基于zookeeper的broker自动识别和负载均衡(基于Partitioner)。

其中,基于zookeeper的broker自动识别值得一说。producer可以通过zookeeper获取可用的broker列表,也可以在zookeeper中注册listener,该listener在以下情况下会被唤醒:

a.添加一个broker

b.删除一个broker

c.注册新的topic

d.broker注册已存在的topic

当producer得知以上时间时,可根据需要采取一定的行动。

(2) Broker

Broker采取了多种策略提高数据处理效率,包括sendfile和zero copy等技术。

(3) Consumer

consumer的作用是将日志信息加载到中央存储系统上。kafka提供了两种consumer接口,一种是low level的,它维护到某一个broker的连接,并且这个连接是无状态的,即,每次从broker上pull数据时,都要告诉broker数据的偏移量。另一种是high-level 接口,它隐藏了broker的细节,允许consumer从broker上push数据而不必关心网络拓扑结构。更重要的是,对于大部分日志系统而言,consumer已经获取的数据信息都由broker保存,而在kafka中,由consumer自己维护所取数据信息。

5. Cloudera的Flume

Flume是cloudera于2009年7月开源的日志系统。它内置的各种组件非常齐全,用户几乎不必进行任何额外开发即可使用。

设计目标:

(1) 可靠性

当节点出现故障时,日志能够被传送到其他节点上而不会丢失。Flume提供了三种级别的可靠性保障,从强到弱依次分别为:end-to-end(收到数据agent首先将event写到磁盘上,当数据传送成功后,再删除;如果数据发送失败,可以重新发送。),Store on failure(这也是scribe采用的策略,当数据接收方crash时,将数据写到本地,待恢复后,继续发送),Best effort(数据发送到接收方后,不会进行确认)。

(2) 可扩展性

Flume采用了三层架构,分别问agent,collector和storage,每一层均可以水平扩展。其中,所有agent和collector由master统一管理,这使得系统容易监控和维护,且master允许有多个(使用ZooKeeper进行管理和负载均衡),这就避免了单点故障问题。

(3) 可管理性

所有agent和colletor由master统一管理,这使得系统便于维护。用户可以在master上查看各个数据源或者数据流执行情况,且可以对各个数据源配置和动态加载。Flume提供了web 和shell script command两种形式对数据流进行管理。

(4) 功能可扩展性

用户可以根据需要添加自己的agent,colletor或者storage。此外,Flume自带了很多组件,包括各种agent(file, syslog等),collector和storage(file,HDFS等)。

架构

正如前面提到的,Flume采用了分层架构,由三层组成,分别为agent,collector和storage。其中,agent和collector均由两部分组成:source和sink,source是数据来源,sink是数据去向。

(1) agent

agent的作用是将数据源的数据发送给collector,Flume自带了很多直接可用的数据源(source),如:

text(“filename”):将文件filename作为数据源,按行发送

tail(“filename”):探测filename新产生的数据,按行发送出去

fsyslogTcp(5140):监听TCP的5140端口,并且接收到的数据发送出去

同时提供了很多sink,如:

console[("format")] :直接将将数据显示在桌面上

text(“txtfile”):将数据写到文件txtfile中

dfs(“dfsfile”):将数据写到HDFS上的dfsfile文件中

syslogTcp(“host”,port):将数据通过TCP传递给host节点

(2) collector

collector的作用是将多个agent的数据汇总后,加载到storage中。它的source和sink与agent类似。

下面例子中,agent监听TCP的5140端口接收到的数据,并发送给collector,由collector将数据加载到HDFS上。

host : syslogTcp(5140) | agentSink("localhost",35853) ;

collector : collectorSource(35853) | collectorSink("hdfs://namenode/user/flume/ ","syslog");

一个更复杂的例子如下:

有6个agent,3个collector,所有collector均将数据导入HDFS中。agent A,B将数据发送给collector A,agent C,D将数据发送给collectorB,agent C,D将数据发送给collectorB。同时,为每个agent添加end-to-end可靠性保障(Flume的三种可靠性保障分别由agentE2EChain, agentDFOChain, and agentBEChain实现),如,当collector A出现故障时,agent A和agent B会将数据分别发给collector B和collector C。

下面是简写的配置文件片段:

agentA : src | agentE2EChain("collectorA:35853","collectorB:35853");

agentB : src | agentE2EChain("collectorA:35853","collectorC:35853");

agentC : src | agentE2EChain("collectorB:35853","collectorA:35853");

agentD : src | agentE2EChain("collectorB:35853","collectorC:35853");

agentE : src | agentE2EChain("collectorC:35853","collectorA:35853");

agentF : src | agentE2EChain("collectorC:35853","collectorB:35853");

collectorA : collectorSource(35853) | collectorSink("hdfs://...","src");

collectorB : collectorSource(35853) | collectorSink("hdfs://...","src");

collectorC : collectorSource(35853) | collectorSink("hdfs://...","src");

此外,使用autoE2EChain,当某个collector 出现故障时,Flume会自动探测一个可用collector,并将数据定向到这个新的可用collector上。

(3) storage

storage是存储系统,可以是一个普通file,也可以是HDFS,HIVE,HBase等。

6. 总结

根据这四个系统的架构设计,可以总结出典型的日志系统需具备三个基本组件,分别为agent(封装数据源,将数据源中的数据发送给collector),collector(接收多个agent的数据,并进行汇总后导入后端的store中),store(中央存储系统,应该具有可扩展性和可靠性,应该支持当前非常流行的HDFS)。

下面表格对比了这四个系统:

7. 参考资料

scribe主页:https://github.com/facebook/scribe

chukwa主页:http://incubator.apache.org/chukwa/

kafka主页:http://sna-projects.com/kafka/

Flume主页:https://github.com/cloudera/flume/

转自:http://dongxicheng.org/search-engine/log-systems/

时间: 2024-10-26 05:00:49

开源日志系统比较的相关文章

Logback 1.0.1发布 开源日志系统

Logback 是一个作为log4j项目的继任者,是由Log4j的创始人Ceki Gulcu设计成一款开源日志系统. Logback 配备基本架构以通用于不同情况下的需求,它分为三个模块:Core module.Classic module 和 Access module.Core module核心模块是为其他两个模块设计的一个基础模块.Classic module类似于log4j的改进版本,实现了SLF4J API使你可以很容易地在logback和其它日志系统(log4j 或 JDK14 )之

开源日志系统log4cplus(一)

log4cplus是C++编写的开源的日志系统,功能非常全面,用到自己开发的工程中会比较专业的,:),本文介绍了log4cplus基本概念,以及如何安装,配置.  ### 简介 ### log4cplus是C++编写的开源的日志系统,前身是java编写的log4j系统.受Apache Software License 保护.作者是Tad E. Smith.log4cplus具有线程安全.灵活.以及多粒度控制的特点,通过将信息划分 优先级使其可以面向程序调试.运行.测试.和维护等全生命周期: 你可

开源日志系统log4cplus(四)

将log信息记录到文件应该说是日志系统的一个基本功能,log4cplus在此基础上,提供了更多的功能,可以按照你预先设定的大小来决定是否转储,当超过该大小,后续log信息会另存到新文件中,依次类推:或者按照日期来决定是否转储.本文将详细介绍这些用法. ### 如何将log记录到文件 ### 我们在例5中给出了一个将log记录到文件的例子,用的是FileAppender类实现的,log4cplus提供了三个类用于 文件操作,它们是FileAppender类.RollingFileAppender类

开源日志系统log4cplus(五)

日志系统的另一个基本功能就是能够让使用者按照自己的意愿来控制什么时候,哪些log信息可以输出. 如果能够让用户在任意时刻设置允许输出的LogLevel的信息就好了,log4cplus通过LogLevelManager. LogLog.Filter三种方式实现了上述功能. ### 优先级控制 ### 在研究LogLevelManager之前,首先介绍一下log4cplus中logger的存储机制,在log4cplus中,所有 logger都通过一个层次化的结构(其实内部是hash表)来组织的,有一

开源日志系统log4cplus(七)

经过短暂的熟悉过程,log4cplus已经被成功应用到了我的项目中去了,效果还不错,:)除了上文提及的 功能之外,下面将介绍log4cplus提供的线程和套接字的使用情况. ### NDC ### 首先我们先了解一下log4cplus中嵌入诊断上下文(Nested Diagnostic Context),即NDC.对log系统而言, 当输入源可能不止一个,而只有一个输出时,往往需要分辩所要输出消息的来源,比如服务器处理来自不同 客户端的消息时就需要作此判断,NDC可以为交错显示的信息打上一个标记

开源日志系统log4cplus(三)

本文介绍了三种控制输出格式的布局管理器的概念和使用情况,通过掌握这些知识,可以更有效地控制log系统输出尽可能贴近你需求的信息来. ### 如何控制输出消息的格式 ### 前面已经讲过,log4cplus通过布局器(Layouts)来控制输出的格式,log4cplus提供了三种类型的Layouts, 分别是SimpleLayout.PatternLayout.和TTCCLayout.其中: 1. SimpleLayout 是一种简单格式的布局器,在输出的原始信息之前加上LogLevel和一个"-

开源日志系统log4cplus(二)

本文介绍了使用log4cplus有六个步骤,并提供了一些例子引导你了解log4cplus的基本使用. ### 基本使用 ### 使用log4cplus有六个基本步骤: 1. 实例化一个appender对象 2. 实例化一个layout对象 3. 将layout对象绑定(attach)到appender对象 4. 实例化一个logger对象,调用静态函数:log4cplus::Logger::getInstance("logger_name") 5. 将appender对象绑定(atta

日志系统之Flume采集加morphline解析

概述 这段时间花了部分时间在处理消息总线跟日志的对接上.这里分享一下在日志采集和日志解析中遇到的一些问题和处理方案. 日志采集-flume logstash VS flume 首先谈谈我们在日志采集器上的选型.由于我们选择采用ElasticSearch作为日志的存储与搜索引擎.而基于ELK(ElasticSearch,Logstash,Kibana)的技术栈在日志系统方向又是如此流行,所以把Logstash列入考察对象也是顺理成章,Logstash在几大主流的日志收集器里算是后起之秀,被Elas

ELK统一日志系统的应用

收集和分析日志是应用开发中至关重要的一环,互联网大规模.分布式的特性决定了日志的源头越来越分散, 产生的速度越来越快,传统的手段和工具显得日益力不从心.在规模化场景下,grep.awk 无法快速发挥作用,我们需要一种高效.灵活的日志分析方式,可以给故障处理,问题定位提供更好的支持.基于全文搜索引擎 Lucene 构建的 ELKstack 平台,是目前比较流行的日志收集方解决方案. ELK系统的部署按照官方文档操作即可,相关资料也很多,这篇文章更多的关注三个组件的设计和实现,帮助大家了解这个流行的