通过执行计划中的CONCATENATION分析sql问题

昨天开发的一个同事找到我,说写了一条sql语句,但是执行了半个小时还没有执行完,想让我帮忙看看是怎么回事。
他大体上给我讲了下逻辑,表bl1_rc_rates是千万级数据量的表,autsu_subscriber 是个临时表,里面只有三百多条数据,bl1_activity_history 表的数据量略小,是百万级的。
   select distinct hist.entity_id, rc.* from bl1_activity_history hist, bl1_rc_rates rc, autsu_subscriber sub
where hist.entity_id = sub.subscriber_no
    and hist.customer_id = sub.customer_id
    and hist.activity_id = '48'
    and hist.entity_id = rc.service_receiver_id
    and hist.customer_id = rc.receiver_customer
    and rc.service_receiver_id=sub.subscriber_no
   and rc.receiver_customer= sub.customer_id
   and trunc(hist.activity_date,'dd') = trunc(rc.effective_date,'dd')
and rc.amount > 0
  and rc.expiration_date is null or rc.expiration_date > to_date('20141019','yyyymmdd');

先来看看执行计划吧,一看吓一跳
Plan hash value: 3128694621
--------------------------------------------------------------------------------------------------------------------------------------------
| Id  | Operation                               | Name                     | Rows  | Bytes |TempSpc| Cost (%CPU)| Time     | Pstart| Pstop |
--------------------------------------------------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT                        |                          |    22G|    13T|       |  4217M  (1)|999:59:59 |       |       |
|   1 |  HASH UNIQUE                            |                          |    22G|    13T|    16T|  4217M  (1)|999:59:59 |       |       |
|   2 |   CONCATENATION                         |                          |       |       |       |            |          |       |       |
|   3 |    NESTED LOOPS                         |                          |    21G|    13T|       |    47M  (1)|159:35:59 |       |       |
|   4 |     NESTED LOOPS                        |                          |    13M|  8211M|       |  1393K  (1)| 04:38:47 |       |       |
|   5 |      PARTITION RANGE ALL                |                          |     1 |   622 |       |   980K  (1)| 03:16:02 |     1 |    11 |
|*  6 |       TABLE ACCESS FULL                 | BL1_RC_RATES             |     1 |   622 |       |   980K  (1)| 03:16:02 |     1 |    11 |
|   7 |      PARTITION RANGE ALL                |                          |    27M|   622M|       |   413K  (1)| 01:22:45 |     1 |    11 |
|   8 |       TABLE ACCESS FULL                 | BL1_ACTIVITY_HISTORY     |    27M|   622M|       |   413K  (1)| 01:22:45 |     1 |    11 |
|   9 |     TABLE ACCESS FULL                   | AUTSU_SUBSCRIBER         |  1634 | 42484 |       |     3   (0)| 00:00:01 |       |       |
|  10 |    NESTED LOOPS                         |                          |       |       |       |            |          |       |       |
|  11 |     NESTED LOOPS                        |                          |     1 |   672 |       |  2949   (1)| 00:00:36 |       |       |
|  12 |      NESTED LOOPS                       |                          |     1 |    50 |       |  2947   (1)| 00:00:36 |       |       |
|  13 |       TABLE ACCESS FULL                 | AUTSU_SUBSCRIBER         |  1634 | 42484 |       |     5   (0)| 00:00:01 |       |       |
|  14 |       PARTITION RANGE ALL               |                          |     1 |    24 |       |     2   (0)| 00:00:01 |     1 |    11 |
|* 15 |        TABLE ACCESS BY LOCAL INDEX ROWID| BL1_ACTIVITY_HISTORY     |     1 |    24 |       |     2   (0)| 00:00:01 |     1 |    11 |
|* 16 |         INDEX RANGE SCAN                | BL1_ACTIVITY_HISTORY_3IX |     1 |       |       |     2   (0)| 00:00:01 |     1 |    11 |
|  17 |      PARTITION RANGE ALL                |                          |     1 |       |       |     2   (0)| 00:00:01 |     1 |    11 |
|* 18 |       INDEX RANGE SCAN                  | BL1_RC_RATES_3IX         |     1 |       |       |     2   (0)| 00:00:01 |     1 |    11 |
|* 19 |     TABLE ACCESS BY LOCAL INDEX ROWID   | BL1_RC_RATES             |     1 |   622 |       |     2   (0)| 00:00:01 |     1 |     1 |
--------------------------------------------------------------------------------------------------------------------------------------------

这条语句的预计结果又22G rows,执行时间已经没法估量了。这种问题一看就是一个很好的案例。
首先就是查看是不是逻辑上出现了明显的问题,这个时候索引的影响已经没那么重要了。

我们来推敲一下where中的过滤条件
   hist.entity_id = sub.subscriber_no
    and hist.customer_id = sub.customer_id
    and hist.entity_id = rc.service_receiver_id
    and
    and rc.service_receiver_id=sub.subscriber_no
   and rc.receiver_customer= sub.customer_id

通过hist.entity_id = sub.subscriber_no和and rc.service_receiver_id=sub.subscriber_no可以推得hist.entity_id=rc.service_receiver_id,在过滤条件中又写了一遍,
同理hist.customer_id  = sub.customer_id和rc.receiver_customer= sub.customer_id可以推得 hist.customer_id = rc.receiver_customer 所以这个条件也是冗余的。
我们可以基于表中的数据量来合理的选择列的关联。
除了这个问题,还有一个明显的问题,就是查询输出列select distinct hist.entity_id, 
既然hist.entity_id和rc.subscriber_no已经是相等的了,就不需要再输出hist.entity_id然后做distinct运算了。为了突出这个问题的严重性,我先不删除冗余的过滤条件。只是删除查询输出列中的distinct hist.entity_id
select rc.* from bl1_activity_history hist, bl1_rc_rates rc, autsu_subscriber sub
where hist.entity_id = sub.subscriber_no
     and hist.customer_id = sub.customer_id
and hist.activity_id = '48'
    and hist.entity_id = rc.service_receiver_id
    and hist.customer_id = rc.receiver_customer
    and rc.service_receiver_id=sub.subscriber_no
    and rc.receiver_customer= sub.customer_id
  and trunc(hist.activity_date,'dd') = trunc(rc.effective_date,'dd')
  and rc.amount > 0
and rc.expiration_date is null or rc.expiration_date > to_date('20141019','yyyymmdd'); 
来看看执行计划
Plan hash value: 1018700604
-----------------------------------------------------------------------------------------------------------------------------------
| Id  | Operation                              | Name                     | Rows  | Bytes | Cost (%CPU)| Time     | Pstart| Pstop |
-----------------------------------------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT                       |                          |    21G|    13T|    47M  (1)|159:36:35 |       |       |
|   1 |  CONCATENATION                         |                          |       |       |            |          |       |       |
|   2 |   NESTED LOOPS                         |                          |    21G|    13T|    47M  (1)|159:35:59 |       |       |
|   3 |    NESTED LOOPS                        |                          |    13M|  8211M|  1393K  (1)| 04:38:47 |       |       |
|   4 |     PARTITION RANGE ALL                |                          |     1 |   622 |   980K  (1)| 03:16:02 |     1 |    11 |
|*  5 |      TABLE ACCESS FULL                 | BL1_RC_RATES             |     1 |   622 |   980K  (1)| 03:16:02 |     1 |    11 |
|   6 |     PARTITION RANGE ALL                |                          |    27M|   622M|   413K  (1)| 01:22:45 |     1 |    11 |
|   7 |      TABLE ACCESS FULL                 | BL1_ACTIVITY_HISTORY     |    27M|   622M|   413K  (1)| 01:22:45 |     1 |    11 |
|   8 |    TABLE ACCESS FULL                   | AUTSU_SUBSCRIBER         |  1634 | 42484 |     3   (0)| 00:00:01 |       |       |
|   9 |   NESTED LOOPS                         |                          |       |       |            |          |       |       |
|  10 |    NESTED LOOPS                        |                          |     1 |   672 |  2949   (1)| 00:00:36 |       |       |
|  11 |     NESTED LOOPS                       |                          |     1 |    50 |  2947   (1)| 00:00:36 |       |       |
|  12 |      TABLE ACCESS FULL                 | AUTSU_SUBSCRIBER         |  1634 | 42484 |     5   (0)| 00:00:01 |       |       |
|  13 |      PARTITION RANGE ALL               |                          |     1 |    24 |     2   (0)| 00:00:01 |     1 |    11 |
|* 14 |       TABLE ACCESS BY LOCAL INDEX ROWID| BL1_ACTIVITY_HISTORY     |     1 |    24 |     2   (0)| 00:00:01 |     1 |    11 |
|* 15 |        INDEX RANGE SCAN                | BL1_ACTIVITY_HISTORY_3IX |     1 |       |     2   (0)| 00:00:01 |     1 |    11 |
|  16 |     PARTITION RANGE ALL                |                          |     1 |       |     2   (0)| 00:00:01 |     1 |    11 |
|* 17 |      INDEX RANGE SCAN                  | BL1_RC_RATES_3IX         |     1 |       |     2   (0)| 00:00:01 |     1 |    11 |
|* 18 |    TABLE ACCESS BY LOCAL INDEX ROWID   | BL1_RC_RATES             |     1 |   622 |     2   (0)| 00:00:01 |     1 |     1 |
-----------------------------------------------------------------------------------------------------------------------------------

情况相对改善了不少,但是还是有问题的节奏。
这个时候我们来看看执行计划吧,注意到这个执行计划有些奇怪,只有3个表的关联,但是执行计划中缺出现了两个子查询,对于执行计划中的CONCATENATION自己比较陌生,就没有细究。
直接看走一个并行,效果怎么样。并行开了4个。从执行计划来看,情况好了很多,看似可以完成的样子了。
-----------------------------------------------------------------------------------------------------------------------------------------------------------------
| Id  | Operation                               | Name                     | Rows  | Bytes | Cost (%CPU)| Time     | Pstart| Pstop |    TQ  |IN-OUT| PQ Distrib |
-----------------------------------------------------------------------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT                        |                          |  1282 |   831K|   390K  (1)| 01:18:07 |       |       |        |      |        |
|   1 |  CONCATENATION                          |                          |       |       |            |          |       |       |        |      |        |
|   2 |   PX COORDINATOR                        |                          |       |       |            |          |       |       |        |      |        |
|   3 |    PX SEND QC (RANDOM)                  | :TQ10000                 |   801 |   519K|   271K  (1)| 00:54:23 |       |       |  Q1,00 | P->S | QC (RAND)       |
|   4 |     NESTED LOOPS                        |                          |   801 |   519K|   271K  (1)| 00:54:23 |       |       |  Q1,00 | PCWP |        |
|   5 |      NESTED LOOPS                       |                          |     1 |   638 |   271K  (1)| 00:54:23 |       |       |  Q1,00 | PCWP |        |
|   6 |       PX BLOCK ITERATOR                 |                          |     1 |   622 |   271K  (1)| 00:54:23 |     1 |    11 |  Q1,00 | PCWC |        |
|*  7 |        TABLE ACCESS FULL                | BL1_RC_RATES             |     1 |   622 |   271K  (1)| 00:54:23 |     1 |    11 |  Q1,00 | PCWP |        |
|   8 |       PARTITION RANGE ALL               |                          |     1 |    16 |     2   (0)| 00:00:01 |     1 |    11 |  Q1,00 | PCWP |        |
|*  9 |        TABLE ACCESS BY LOCAL INDEX ROWID| BL1_ACTIVITY_HISTORY     |     1 |    16 |     2   (0)| 00:00:01 |     1 |    11 |  Q1,00 | PCWP |        |
|* 10 |         INDEX RANGE SCAN                | BL1_ACTIVITY_HISTORY_3IX |     1 |       |     2   (0)| 00:00:01 |     1 |    11 |  Q1,00 | PCWP |        |
|  11 |      TABLE ACCESS FULL                  | AUTSU_SUBSCRIBER         |  1634 | 42484 |     5   (0)| 00:00:01 |       |       |  Q1,00 | PCWP |        |
|  12 |   NESTED LOOPS                          |                          |   481 |   311K|   118K  (1)| 00:23:45 |       |       |        |      |        |
|  13 |    NESTED LOOPS                         |                          |     1 |   648 |  3764   (1)| 00:00:46 |       |       |        |      |        |
|  14 |     TABLE ACCESS FULL                   | AUTSU_SUBSCRIBER         |  1634 | 42484 |     5   (0)| 00:00:01 |       |       |        |      |        |
|  15 |     PARTITION RANGE ALL                 |                          |     1 |   622 |     2   (0)| 00:00:01 |     1 |    11 |        |      |        |
|* 16 |      TABLE ACCESS BY LOCAL INDEX ROWID  | BL1_RC_RATES             |     1 |   622 |     2   (0)| 00:00:01 |     1 |    11 |        |      |        |
|* 17 |       INDEX RANGE SCAN                  | BL1_RC_RATES_3IX         |    13 |       |     2   (0)| 00:00:01 |     1 |    11 |        |      |        |
|  18 |    PARTITION RANGE ALL                  |                          |    27M|   415M|   413K  (1)| 01:22:45 |     1 |    11 |        |      |        |
|* 19 |     TABLE ACCESS FULL                   | BL1_ACTIVITY_HISTORY     |    27M|   415M|   413K  (1)| 01:22:45 |     1 |    11 |        |      |        |
-----------------------------------------------------------------------------------------------------------------------------------------------------------------

但是根据实际的情况,从300条左右的数据中大表中的索引,查取数据应该也没那么慢。肯定还是什么地方不对劲,就查看了下CONCATENATION 的解释

concatenation在sql级别和两个hint相关,no_expend, no_concat

no_expand提示的说明是

The NO_EXPAND hint prevents the cost-based optimizer from considering OR-expansion for queries having OR conditions or IN-lists in the WHERE clause. Usually, the optimizer considers using OR expansion and uses this method if it decides that the cost is lower than not using it.

use_concat提示的说明是

The USE_CONCAT hint forces combined OR conditions in the WHERE clause of a query to be transformed into a compound query using the UNION ALL set operator. Generally, this transformation occurs only if the cost of the query using the concatenations is cheaper than the cost without them.

 当我读到第二句的时候,我就恍然明白了。
和开发确认过滤条件and rc.expiration_date is null or rc.expiration_date > to_date('20141019','yyyymmdd');  是不是 期望是 and (rc.expiration_date is null or rc.expiration_date > to_date('20141019','yyyymmdd')); 
他一愣,一想确实是这个道理。剩下的事情就简单了。我们不要并行来看看最终的执行结果。
select rc.* from  bl1_rc_rates rc, autsu_subscriber sub,bl1_activity_history hist
where rc.service_receiver_id=sub.subscriber_no
and rc.receiver_customer= sub.customer_id
and  rc.amount > 0
and (rc.expiration_date is null or rc.expiration_date > to_date('20141019','yyyymmdd'))
and rc.service_receiver_id=hist.entity_id
and rc.receiver_customer=hist.customer_id
and  hist.activity_id = '48'

Plan hash value: 3908327465
----------------------------------------------------------------------------------------------------------------------------------
| Id  | Operation                             | Name                     | Rows  | Bytes | Cost (%CPU)| Time     | Pstart| Pstop |
----------------------------------------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT                      |                          |  1634 |  1059K|  6706   (1)| 00:01:21 |       |       |
|   1 |  NESTED LOOPS                         |                          |       |       |            |          |       |       |
|   2 |   NESTED LOOPS                        |                          |  1634 |  1059K|  6706   (1)| 00:01:21 |       |       |
|   3 |    NESTED LOOPS                       |                          |  1634 |  1034K|  3764   (1)| 00:00:46 |       |       |
|   4 |     TABLE ACCESS FULL                 | AUTSU_SUBSCRIBER         |  1634 | 42484 |     5   (0)| 00:00:01 |       |       |
|   5 |     PARTITION RANGE ALL               |                          |     1 |   622 |     2   (0)| 00:00:01 |     1 |    11 |
|*  6 |      TABLE ACCESS BY LOCAL INDEX ROWID| BL1_RC_RATES             |     1 |   622 |     2   (0)| 00:00:01 |     1 |    11 |
|*  7 |       INDEX RANGE SCAN                | BL1_RC_RATES_3IX         |    13 |       |     2   (0)| 00:00:01 |     1 |    11 |
|   8 |    PARTITION RANGE ALL                |                          |     1 |       |     2   (0)| 00:00:01 |     1 |    11 |
|*  9 |     INDEX RANGE SCAN                  | BL1_ACTIVITY_HISTORY_3IX |     1 |       |     2   (0)| 00:00:01 |     1 |    11 |
|* 10 |   TABLE ACCESS BY LOCAL INDEX ROWID   | BL1_ACTIVITY_HISTORY     |     1 |    16 |     2   (0)| 00:00:01 |     1 |     1 |
----------------------------------------------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
   6 - filter("RC"."AMOUNT">0 AND ("RC"."EXPIRATION_DATE" IS NULL OR "RC"."EXPIRATION_DATE">TO_DATE(' 2014-10-19
              00:00:00', 'syyyy-mm-dd hh24:mi:ss')) AND "RC"."RECEIVER_CUSTOMER"="SUB"."CUSTOMER_ID")
   7 - access("RC"."SERVICE_RECEIVER_ID"="SUB"."SUBSCRIBER_NO")
   9 - access("RC"."SERVICE_RECEIVER_ID"="HIST"."ENTITY_ID" AND "HIST"."ACTIVITY_ID"='48')
  10 - filter("RC"."RECEIVER_CUSTOMER"="HIST"."CUSTOMER_ID")

看来任何细小对的问题都会导致很严重的问题,尤其是在数据量太大的情况下,错误的放大效应就会很明显。

时间: 2024-11-06 03:55:37

通过执行计划中的CONCATENATION分析sql问题的相关文章

浅析SQL SERVER执行计划中的各类怪相

在查看执行计划或调优过程中,执行计划里面有些现象总会让人有些疑惑不解:     1:为什么同一条SQL语句有时候会走索引查找,有时候SQL脚本又不走索引查找,反而走全表扫描?     2:同一条SQL语句,查询条件的取值不同,它的执行计划会一致吗?     3: 同一条SQL语句,其执行计划会变化,为什么     4: 在查询条件的某个或几个字段上创建了索引,执行计划就一定会走该索引吗?     5:同时存在几个索引,SQL语句会走那个索引?      .....................

《Oracle高性能SQL引擎剖析:SQL优化与调优机制详解》一2.5 执行计划中其他信息的含义

2.5 执行计划中其他信息的含义 通过DBMS_XPLAN输出执行计划,除了计划本身外,还可以获得一些其他信息帮助我们进一步分析执行计划及语句性能. 2.5.1 查询块和对象别名 在使用DBMS_XPLAN显示执行计划时,选择'ADVANCED'预定义格式作为参数或者加入'ALIAS'控制字符串,可以在输出中看到以下内容: Query Block Name / Object Alias (identified by operation id): -------------------------

SQL Server 2008处理隐式数据类型转换在执行计划中的增强

什么是隐式http://www.aliyun.com/zixun/aggregation/18278.html">数据类型转换: 当我们在语句的where 条件等式的左右提供了不同数据类型的列或者变量,SQL Server在处理等式之前,将其中一端的数据转换成跟另一端数值的数据类型一致,这个过程叫做隐式数据类型转换. 比如 char(50)=varchar(50), char(50)=nchar(50), int=float, int=char(20) 这些where 条件的等式都会触发隐

执行计划中各字段各模块描述

      在SQL语句的执行计划中,包含很多字段项和很多模块,其不同字段代表了不同的含义且在不同的情形下某些字段.模块显示或不显示,下面的描述给出了执行计划中各字段的含义以及各模块的描述.        有关执行计划中各字段模块的描述请参考: 执行计划中各字段各模块描述        有关由SQL语句来获取执行计划请参考:     使用 EXPLAIN PLAN 获取SQL语句执行计划        有关使用autotrace来获取执行计划请参考:启用 AUTOTRACE 功能       有

关于执行计划中的%CPU的含义

今天突然想起前段时间学习的一篇博客,是oaktable的Charles Hooper所写,链接为: https://hoopercharles.wordpress.com/2010/02/19/what-is-the-meaning-of-the-cpu-column-in-an-explain-plan/ 自己也趁机消化了一下.对于执行计划中的 列Cost (%CPU),其中的%CPU的含义很少有人能够说得清楚,于是Charles Hooper写了上面的文章来解释. 对于执行计划的信息都会放入

执行计划中常见index访问方式(转)

近期有朋友对于单个表上的index各种情况比较模糊,这里对于单个表上,单个index出现的大多数情况进行了总结性测试,给出了测试结果,至于为什么出现这样的试验结果未做过多解释,给读者留下思考的空间.本篇文章仅仅是为了测试hint对index的影响,而不是说明走各种index方式的好坏.参考: INDEX FULL SCAN vs INDEX FAST FULL SCAN创建表模拟测试 SQL> create table t_xifenfei as select object_id,object_

FAQ系列 | 解读EXPLAIN执行计划中的key_len

导读 EXPLAIN中的key_len一列表示什么意思,该如何解读? EXPLAIN执行计划中有一列 key_len 用于表示本次查询中,所选择的索引长度有多少字节,通常我们可借此判断联合索引有多少列被选择了. 在这里 key_len 大小的计算规则是: 一般地,key_len 等于索引列类型字节长度,例如int类型为4-bytes,bigint为8-bytes: 如果是字符串类型,还需要同时考虑字符集因素,例如:CHAR(30) UTF8则key_len至少是90-bytes: 若该列类型定义

FAQ系列 | EXPLAIN执行计划中要重点关注哪些要素

导读 EXPLAIN的结果中,有哪些关键信息值得注意呢? MySQL的EXPLAIN当然和ORACLE的没法比,不过我们从它输出的结果中,也可以得到很多有用的信息. 总的来说,我们只需要关注结果中的几列: 列名 备注 type 本次查询表联接类型,从这里可以看到本次查询大概的效率 key 最终选择的索引,如果没有索引的话,本次查询效率通常很差 key_len 本次查询用于结果过滤的索引实际长度,参见另一篇分享(FAQ系列-解读EXPLAIN执行计划中的key_len) rows 预计需要扫描的记

Oracle 历史SQL语句执行计划的对比与分析

    基于CBO优化器的环境中,SQL执行计划的生成依赖于统计信息的真实与完整.如列的离散度,列上的直方图,索引的可用性,索引上的聚簇因子.当这些信息是真实完整的情况下,CBO优化器通常都可以制定最优的执行计划.也正因此CBO优化器也灵活,难以控制,任一信息的不真实或缺失都可能导致执行计划发生变化而产生多个版本.经常碰到的情形是之前的某个SQL语句前阵子还不是TOP SQL,而最近变成了TOP SQL.或者说之前尽管是TOP SQL但,但最近尽然成了TOP 1.对于此情形,我们可以比对SQL语