CIO:大数据用于商业决策的难点

越来越多的企业开始重视对大数据的分析与利用。据贝恩咨询公司的一份全球调研报告显示,在其调研的超过400家年营业额高于5亿美元的企业中,有大约60%的企业正积极在大数据方面进行投资,以期获取企业发展的新动力。大数据已经从高端化、差异化的决策工具,渐渐演化为各企业常规化的决策工具。

同时,人们对于大数据价值的看法也在发生转变。在大数据研究的早期,极端乐观的态度是当时的主流,但近年来,这类观点开始受到反思与质疑。“如果对大数据解读得过度,实际上就是滥用数据”。研究大数据,诚然可以让企业更好地发现数据背后的商机,但是,把大数据运用到商业决策也存在不少局限。

以舍恩伯格之见,大数据用于商业决策存在以下三大难点。

难点一:只分析相关关系,导致商业决策出现盲区。

科研领域的很多统计和分析方法未必适合信息时代的商业领域,舍恩伯格说:“很多人把数据间的相关关系看成是因果关系,这有可能造成对大数据的过度解读。”美国旧金山游戏公司Zynga的兴衰,正是这样一个例证。

Zynga公司的联合创始人马克·平卡斯(Mark Pincus)非常笃信大数据的力量。他在公司创立之初就搭建了一套完整的数据分析系统,并组建了以谷歌公司数据分析专家领衔的大数据团队。Zynga公司在数据仓库、A/B测试工具和大数据分析方法上的领先,使其较其他游戏公司而言,可以更快按用户反馈意见调整各类决策和设置。比如,游戏中的草地到底是设为红色还是绿色,Zynga公司管理层不做决策,而是同时设置红绿两套颜色方案,哪一边用户付费程度高,Zynga公司就迅速把草地定调为哪种颜色。这样的优势,也确实让Zynga公司在草创时期获益良多,其最热门的一款游戏《Farm Ville》曾创下月活跃用户8300万的纪录。

但时间一长,这套体系的弊端也渐渐浮现。这种完全按当前用户喜好决策的模式,或许能分析游戏何以畅销的相关因素,但无法分析游戏何以畅销的因果因素。这使得Zynga公司的新游戏产品持续产生同质化迭代。公司上下从领导层到各部门员工,关注游戏商业模式创新者日益减少。而在竞争激烈、变化速度极快的游戏行业,失去创新精神就意味着全面落后。随着Supercell公司、King公司等对手不断推出创新型游戏,Zynga公司也在市值蒸发逾100亿美元后,逐渐淡出主流游戏公司阵营。

当前,商业环境的多变,令企业在做商业决策时更像是在面临一个充满突变的混沌系统。此时,基于陈旧数据、基于相关关系分析得出的结论,哪怕分析过程中数据量再大、分析方法再繁复,也难保企业不走进决策的盲区。

难点二:完整的大数据难以被企业获取。

所谓“大数据”,指的是总量的全体数据。但囿于人类在数据采集、存储与处理等方面的种种客观限制,要获得这样的数据往往难度巨大。

一方面,完整大数据的采集非常困难。舍恩伯格表示:“大数据应用通常分为三个步骤:第一步是搜集数据,第二步是分析数据,第三步是根据数据分析结果做出决策。其中,对很多公司而言,最难的一点就是搜集数据。”

另一方面,随着数据规模变得越来越庞大,企业的大数据存储与处理能力也在不断受到挑战。在传统介质存储数据已愈发不现实的今天,商业数据的存储往往更依赖云储存等方式。这样一来,企业在添置云服务及Hadoop分布计算平台等方面的预算,将是一笔不小支出。另外,由于完整的、结构化的数据难以获取,大数据在很大程度上存在着非结构化的特征。例如,舍恩伯格就在《大数据时代》一书中有写道,“只有5%的数字数据是结构化的且能适用于传统数据库”。可见,企业在采用智能分析、图像识别等一系列先进算法来使大数据结构化时,将面临高额花费。一旦企业的相关投入跟不上,其所获得的大数据就难言完整。

并不足够完整的大数据,不仅不能为企业决策提供帮助,反而可能起到误导的作用。在影视行业,就发生过试图利用大数据预测影片票房,结果却与实际票房差距甚远的事例。比如,爱梦娱乐公司就曾利用其大数据建模,为电影《后会无期》推算了影片总票房收入,其推算结果为4.3亿到4.8亿元。而该影片的实际票房则突破了6.2亿元。这样的推算结果,显然难以帮助影业公司在产品宣传、渠道建设等方面进行理性决策。事实上,爱奇艺公司CEO龚宇也曾表示,百度和爱奇艺也有相关的大数据,但因为在这些搜集到的数据中仍有涉及不到的因素,所以这类预测的准确率不算太高。由此可见,只要大数据中仍存在遗漏和偏差,其对企业潜在的误导可能性就不容忽视。

难点三:大数据分析领域人才短缺。

企业对大数据的运用能力,受制于其人才储备状况。舍恩伯格说,“在大数据领域的研究和发展中,最重要的是人才。”

但因为大数据分析兴起的时间并不长,且分析团队往往规模不小,所以,即使是顶尖企业在组建大数据分析部门时也难言轻松。以Facebook公司为例,这家硅谷巨头花了将近四年时间,建立了一个超过30人的团队,才搭建起Facebook自己的数据处理平台。维持这个数据处理平台的常规运行,更是需要超过100名数据分析专家。又比如,LinkedIn公司建立起自己的大数据部门用了整整六年时间。

如果这些知名公司,都需要在大数据分析部门的建设上如此费心费力,那么,其他公司在完成此任务时,其难度无疑更甚。麦肯锡咨询公司发布的一份大数据报告就曾预测,到2018年,仅美国在数据科学家方面的人才缺口就会达到14万至19万人。人员构架的短板,则会导致大数据分析领域先进技术难以得到实施。从贝恩咨询公司的那份全球调研报告中可以发现,目前仅有38%的企业,能够使用如NoSQL、HPCC以及自动数据清洗算法等大数据领域的先进分析方法。这些都使得各企业在用大数据帮助企业决策时,其效果需要打上一个不小的问号。

缩小决策范围,才能放大大数据的作用

在运用大数据来辅助企业决策方面,舍恩伯格认为亚马逊是个典型案例。

对于用户在亚马逊网站上的页面停留时间、评论查看情况、各类关键词的搜索、各种商品的浏览量等大数据,亚马逊公司都会做出细致分析。这家在各个业务环节中都无不体现着“数据驱动”的公司,也在2016年《财富》全球500强排行榜中跻身前50强,排名达到第44位。诚如舍恩伯格所言,“那些能够理解大数据、并且懂得让大数据提供价值的公司,将能够有更多的成功可能性。”

大数据能让商业决策变得更盲目,还是更理性?舍恩伯格认为关键还是在于,企业是否对大数据的运用范围进行了缩小,为其树立一些边界。

即使是非常重视大数据力量的亚马逊公司,其在推出Prime等前瞻性业务时,主要依靠的也不是某些大数据,而是该公司创始人杰夫·贝佐斯(Jeff Bezos)的经营哲学与商业洞见。

舍恩伯格说:“大数据是一种资源和工具,它的目的应限定为告知,而不是解释。”把“告知”的任务交给大数据,而把“解释”的权利保留在人的手中,才是让大数据参与企业商业决策的良好方法。大数据的真正魅力,恰恰产生于其变“小”之后。

这样,大数据在释放用户信息、改进商业建模、优化决策精细程度等方面的优势,将得到保留。与此同时,管理者也能利用大数据提供的精准量化分析成果,使自己在战略远见与商业洞察方面的优势获得更强有力的支撑。

今年3月,谷歌公司旗下的AlphaGo以4:1的总比分战胜世界围棋冠军李世石,引起了巨大轰动。正如舍恩伯格所述,“现代的人工智能,其进行自我深度学习的根基就是大数据”,AlphaGo,正是人类对大数据决策能力的一次良好运用。

微缩于19X19格的围棋规则边界后,AlphaGo运用大数据完成了远比人类更高明的决策,给予世人以启示。

在舍恩伯格看来,“人类要知晓大数据的力量,同时也要看到大数据的局限”。在未来,一个个有边界限定的“棋盘”,或许才是大数据在商业决策时更好的用武之地。

本文转自d1net(转载)

时间: 2024-11-02 09:18:12

CIO:大数据用于商业决策的难点的相关文章

零售品牌如何驾驭大数据主导商业决策?

从渠道粗放管理,商品粗放管道到移动互联网蓬勃发展,零售企业面对全渠道整合发展,也需要重新构建全渠道解决方案.零售不应再简单以线上.线下独立区分,而将真正从消费者的角度出发,逐步演变为各渠道融合,由卖出商品升级为与消费者建立情感联系.当消费者在实体店铺经过了解,试衣,选择某品牌的商品进行购买,那么,现在的消费者需要用他们最习惯的方法能保留下下次有机会再连接的方式,这个方式不仅仅是再次来店,也许是该品牌上新的图片或是秒杀,促销的信息.这才是消费者"偷懒"的想法,因为现在消费者选择的成本太大

透析:大数据与商业决策究竟是何关系?

今天,我们正处于决策成本产生巨变的爆发点,过去那些想尽办法都无法获取的数据,在今天唾手可得,而当有些表面上完全不相关的行业数据关联起来时,居然产生了新的商业价值.更重要的是,过去,我们更多地是带着问题去寻找能够验证自己观点的数据,而今天我们却可以使用数据去预测可能出现的问题.海量数据可以使人的智慧得到更大的发挥,并变得更加规模化.大数据的本质是人,数据研究的极点就是莫测的人性.我们一旦掌控了数据之后的数据,就会拥有制胜未来商业的无敌利器. 假定数据是脏的 在处理数据的时候,会像污水处理厂一样,每

《大数据导论》采用大数据的商业动机与驱动

本节书摘来自华章出版社<Spark大数据分析:核心概念.技术及实践>一书中的第1章,第节,作者托马斯·埃尔(Thomas Erl),瓦吉德·哈塔克(Wajid Khattak),保罗·布勒(Paul Buhler)更多章节内容可以访问"华章计算机"公众号查看. 采用大数据的商业动机与驱动 在当今世界的许多组织中,业务可以像其所采用的技术那样进行"架构".这种观念上的转变体现在当今企业架构领域的不断扩大,即过去只与技术架构紧密结合,而现在却也同样包含业务架

泰康人寿CIO:大数据考验真实性与安全性

本文讲的是泰康人寿CIO:大数据考验真实性与安全性,互联网开启了一次重大的时代转型,正在改变人们的生活以及理解世界的方式,成为新发明和新服务的源泉,未来更多的改变正蓄势待发-- 2012-2013年,中国互联网发展突然以一种不按常理出牌的方式横杀进金融领域,尽管还未真正走出互联网金融的新路,但各金融行业如何与互联网更好地结合,为客户提供更加创新的产品和人性化的服务,已成为各金融机构越来越密集研究的课题. 尤其是随着大资管时代的到来,跨业.混业经营开始成为业界常态,各金融产品能否放在同一平台上进行

大数据:商业革命与科学革命

什么叫大数据?    "大数据"是"数据化"趋势下的必然产物!数据化最核心的理念是:"一切都被记录,一切都被数字化",它带来了两个重大的变化:一是数据量的爆炸性剧增,最近2年所产生的数据量等同于2010年以前整个人类文明产生的数据量总和:二是数据来源的极大丰富,形成了多源异构的数据形态,其中非结构化数据(包括语音.视频.图像等)所占比例逐年增大.    牛津大学互联网研究所维克托·迈尔-舍恩伯格教授指出,"大数据"所代表的是当

《数据分析变革:大数据时代精准决策之道》一第1章 了解运营型分析1.1 定义运营型分析

第1章 了解运营型分析 数据分析变革:大数据时代精准决策之道 毋庸置疑,巨大变革正在发生!运营型分析正在引领以分析为特征的工业革命,很多公司运用分析手段的疆界也因此不断向前推进.运营型分析将源源不断地显著增加那些必须执行分析来构建和加速的流程数目.后面我们会提到,诸如决策时限以及数据洞察时间等新概念将会成为影响如何投入以及决定关注方向的主要推动力. 运营型分析需要在整个企业内部建立一套规则明确.条理清晰的指导方法,同时还需要很多技术.流程甚至是企业文化方面的配套变更.人们起初并不习惯把许多日常决

《大数据导论》一第2章 采用大数据的商业动机与驱动

第2章 采用大数据的商业动机与驱动 在当今世界的许多组织中,业务可以像其所采用的技术那样进行"架构".这种观念上的转变体现在当今企业架构领域的不断扩大,即过去只与技术架构紧密结合,而现在却也同样包含业务架构.尽管如今人们还只是从一个机械系统的视角来审视一批批的业务,即一条条指令由行政人员发布给主管,再传递给前线的员工们,但是,基于链接与评测的反馈循环机制为管理决策的有效性提供了保障. 这种从决策到实施再到对结果的测评的循环使得企业有机会不断优化其运营.然而事实上,这种机械化的管理观点正

《数据分析变革:大数据时代精准决策之道》一导读

前 言 数据分析变革:大数据时代精准决策之道正如19世纪的制造业所经历的那样,如今的分析领域也需要经受一场"工业革命".当下的分析流程多以一种像手工艺式的方式创建,需要花费很多心思和定制化服务.在大多情况下这种手工艺式的方法仍是适用的.然而,我们也必须将数据分析的规模和影响推进到一个更高的层级.工业革命使制造流程实现了从手工制作到大规模高质量生产的现代科技奇迹.在分析领域也必须要发生同样的变革. 几百年前,如果人们需要一个碗,则需要去找陶艺工人,他可以根据任何需求定制出一个碗来.但问题

《数据分析变革:大数据时代精准决策之道》一第一部分 变革已然开始

第一部分 变革已然开始 数据分析变革:大数据时代精准决策之道本文仅用于学习和交流目的,不代表异步社区观点.非商业转载请注明作译者.出处,并保留本文的原始链接.