论文阅读之 DECOLOR: Moving Object Detection by Detecting Contiguous Outliers in the Low-Rank Representation

DECOLOR: Moving Object Detection by Detecting Contiguous Outliers

in the Low-Rank Representation

Xiaowei Zhou et al.

 

Abstract—Object detection is a fundamental step for automated video analysis in many vision applications. Object detection in a video
is usually performed by object detectors or background subtraction techniques. Often, an object detector requires manually labeled
examples to train a binary classifier, while background subtraction needs a training sequence that contains no objects to build a background model. To automate the analysis, object detection without a separate training phase becomes a critical task. People have tried to tackle this task by using motion information. But existing motion-based methods are usually limited when coping with complex scenarios such as nonrigid motion and dynamic background. In this paper, we show that the above challenges can be addressed in a unified framework named DEtecting Contiguous Outliers in the LOw-rank Representation (DECOLOR). This formulation integrates object detection and background learning into a single process of optimization, which can be solved by an alternating algorithm efficiently. We explain the relations between DECOLOR and other sparsity-based methods. Experiments on both simulated data and real sequences demonstrate that DECOLOR outperforms the state-of-the-art approaches and it can work effectively on a wide range of complex scenarios.

本文的三个贡献点,分别是:

1.提出了一个在低秩框架下的离群点检测方法,即:DECOLOR.

2.引入了连续先验,用MRF来对相邻像素点之间的联系进行建模.

3.结合了参数运动模型,来弥补相机的运动.使得DECOLOR在动态背景下,仍可以取得不错的效果.

 

3 C ONTIGUOUS O UTLIER D ETECTION IN THE L OW -R ANK R EPRESENTATION

3.2.  Formulation

本文将输入的视频记为D,那么要做的工作就是将D分解为前景F和背景B,其模型的构建分别为:

背景模型:在不考虑动态背景的情况下,视频的背景在没有光照的变化和周期性的纹理的影响时,背景的强度应该是不变的.所以,背景图像可以看作是现行相关的,构成了一个低秩矩阵B,于是就有了:

 rank(B) <=  K;

前景模型:

所谓前景,也就是相对于背景而言运动的物体,也可以说是 any object that moves differently from the background. 前景目标的运动导致了强度的变化,这就使得低秩的背景无法模拟此类像素点.所以,在低秩表示的时候,这些像素点就成了离群点.另外,就是文章引入了一个先验,即:前景目标应该是连续的区域并且相对较小.可以用马尔科夫随机场来对前景像素点进行建模.马尔科夫随机场是一种图模型(Graph Model),谈到图模型,自然少不了边和点.这里,就是将单个像素点比作是图的一个顶点,而两个像素点之间的联系,就可看作是图的边.根据Ising model 可以得到如下的关于前景S的能量函数:

         

其中,Uij 代表前景支持Sij的一元势能, Lambda ij,kl 控制着像素点Sij 和Skl之间相关性的强度.一元势能Uij的定义为:

              

从这个定义看出,ij位置的像素点为前景时,其一元能量为 Lambda ij, 当其为背景时,则是0.当最小化公式(4)时,会使得 Uij 最小,也就使得前景像素点尽量稀疏了.( sparse foreground ). 从公式(4)的第二项可以看出,当ij 和kl位置处的像素点相同时,即 Sij = Skl=0或者=1时,第二项为0;否则就是1.这样最小化公式(4)也使得前景区域和背景区域尽可能的平滑,

信号模型:

信号模型描述了D的构成.在背景区域,Sij = 0, 我们认为 Dij = Bij + εij, 其中εij代表独立同分布的高斯噪声.在前景区域,Sij = 1,背景区域被前景区域所遮挡,所以,Dij等于前景的强度.

 

将上述三个模型统一起来,就是提出的如下model:

         

为了使得上述最小化能量可解,作了相关的松弛,即: 用核范数取代了 rank(B)<=K, 将公式(6)写成其对偶的形式,并且引入矩阵操作符,得到最终的能量函数:

           

其中,A 是图的邻结矩阵.

 

3.3. Algorithm

公式(7)的目标函数是非凸的,包括连续的和离散的变量.联合的优化是非常困难的,所以,在这里采用了迭代的方式,分别进行前景S和背景B的求解.B-step是一个凸优化问题,S-step是联合优化问题.

3.3.1  Estimation of the Low-Rank Matrix B

给定前景支持S的预测,那么最小化公式(7)就变成了如下的矩阵完全问题:

                                  

这是从部分观察来学习一个低秩的矩阵.该问题可以用 soft-impute 算法来求解,并且用到了如下的引理:

           

重写公式(8),我们有:

           

利用引理1,通过迭代的利用下列式子,可以得到公式(8)的最优解.

           

 

 

SOFT-IMPUTE 算法对应的code如下:

 

 1 %% function for soft-impute
 2 function [Z,Znorm,alpha] = softImpute(X,Z,Omega,alpha0,maxRank)
 3 %
 4 % This program implements the soft-impute algorithm followed by
 5 % postprocessing in the Matrix completion paper Mazumder'10 IJML
 6 % min || Z - X ||_Omega + \alpha || Z ||_Nulear
 7 % \alpha is decrease from alpha0 to the minima value that makes rank(Z) <= maxRank
 8
 9 % X is the incomplete matrix
10 % maxRank is the desired rank in the constraint
11 % Omega is the mask with value 1 for data and 0 for missing part
12 if isempty(Z)
13     Z = X;
14 end
15 if isempty(Omega)
16     Omega = true(size(X));
17 end
18 if isempty(alpha0)
19     [U,D] = svd(X,'econ');
20     alpha0 = D(2,2);
21 end
22 if isempty(maxRank)
23     maxRank = -1;
24 end
25 % parameters
26 eta = 0.707;
27 epsilon = 1e-4;
28 maxInnerIts = 20;
29 %% trivial
30 % no rank constraint
31 if maxRank >= min(size(X))
32     Z = X;
33     [U,D] = svd(Z,'econ');
34     Znorm = sum(diag(D));
35     alpha = 0;
36     return;
37 end
38 % no observation
39 if sum(Omega(:)) == 0
40     % no data
41     Z = zeros(size(X));
42     Znorm = 0;
43     alpha = alpha0;
44     return;
45 end
46 %% soft-impute
47 % 1. initialize
48 outIts = 0;
49 alpha = alpha0;
50 % 2. Do for alpha = alpha0 > alpha_1 > alpha_2 > ... > alpha_maxRank
51 disp('begin soft-impute iterations');
52 while 1
53     outIts = outIts + 1;
54     energy = inf;
55     for innerIts = 1:maxInnerIts
56         % (a)i
57         C = X.*Omega + Z.*(1-Omega);
58         [U,D,V] = svd(C,'econ');
59         VT = V';
60         % soft impute
61         d = diag(D);
62         idx = find(d > alpha);
63         Z = U(:,idx) * diag( d(idx) - alpha ) * VT(idx,:);
64         % (a)ii
65         Znorm = sum(d(idx)-alpha);
66         energy_old = energy;
67         energy = alpha*Znorm + norm(Z(Omega(:))-X(Omega(:)),'fro')/2;
68         if abs(energy - energy_old) / energy_old < epsilon
69             break
70         end
71     end
72     % check termination condition of alpha
73     k = length(idx); % rank of Z
74     disp(['alpha = ' num2str(alpha) ';    rank = ' num2str(k) ';  number of iteration: ' num2str(innerIts)]);
75     if k <= maxRank && alpha > 1e-3
76         alpha = alpha*eta;
77     else
78         break;
79     end
80 end
81 end

 

3.3.2 Estimation of the Outlier Support S

在假设给定低秩矩阵B的情况下,如何求前景支持S ? 我们可以得到如下的公式: 

           

从文章中得知,当给定B的时候,C 是一个常数,那么可以忽略,Sij前面的那一大堆项,也是定量,于是就成了 Sij 和 ||A vec(S)||1两家独大,这两项即是马尔科夫随机场的两项.

于是,通过上述两种方式,就可以迭代的求解出前景S和背景B.

对应的code 为:

 

1        for i = 1:size(Dtau,2)
2             GCO_SetDataCost( hMRF, (amplify/gamma)*[ 0.5*(E(:,i)).^2, ~OmegaOut(:,i)*beta + OmegaOut(:,i)*0.5*max(E(:)).^2]' );
3             GCO_Expansion(hMRF);
4             Omega(:,i) = ( GCO_GetLabeling(hMRF) == 1 )';
5             energy_cut = energy_cut + double( GCO_ComputeEnergy(hMRF) );
6        end

 

 

 

额,说累了,歇会...出去走走...

 

    

 

 4  EXTENSION TO MOVING ACKGROUND

 Here, we use the 2D parametric transforms [60] to model the translation, rotation, and planar deformation of the background. 

Dj ○ τj 代表被向量 τj ∈IRp转换后的第j帧图像,其中p表示运动模型的参数的编号,如:p=6代表仿射运动,p=8代表投影运动.所以,本文所提出的分解变成了 D○τ = B+E+ε,其中, D○τ = [D1○τ1, ... , Dn○τn], τ 是一个向量代表所有 τj 的集合.

 

接下来,我们用D○τ代替公式(7)中的D,并且用B,S来预测 τ,迭代的最小化下列公式:

              

 现在开始讨论如何通过 τ 来最小化公式(20):

              

此处,我们利用增量优化的方法来解决这个参数运动估计问题:在每一次迭代,我们以小的增幅 △τ 更新 τ, 将 D○τ线性化为D○τ + J△τ ,
其中,J为雅克比矩阵.所以,τ 可以用下列方式进行更新:

              

通过△τ 的最小化过程时一个最小二乘问题,有闭合解.

实际上,τ1,...,τn 的更新可以分别独立的进行,为了加速DECOLOR的收敛,我们初始化τ,粗略的将每一帧Dj和中间帧Dn/2进行对比.这个预对齐的过程是用robust multiresolution method来进行的.

 

总的算法,归结为:

                    

   

 

 

 

 --------------   算法部分结束   ---------------

 

 

 

代码解读:

 

1.RUN_REAL_MOVING.m

 1 clear all
 2 close all
 3
 4 addpath('internal');
 5 addpath(genpath('gco-v3.0'));
 6
 7 %% data
 8 % static background
 9 dataList = {'people1','people2','cars6','cars7'};
10
11 for dataID = 1:4
12
13     dataName = dataList{dataID};
14     load(['data\' dataName],'ImData');
15
16     %% run DECOLOR
17     opt.flagAlign = 1;
18     opt.tol = 1e-3;
19     [LowRank,Mask,tau,info] = ObjDetection_DECOLOR(ImData,opt);
20
21     % warp masks to match the original images
22     for i = 1:size(ImData,3)
23         % use [Iwarp,Omega] = warpImg(I,tau,mode,extrapval)
24         Mask(:,:,i) = warpImg(double(Mask(:,:,i)),tau(:,i),1,0)>0.5;
25         cropRatio = 0.01;
26         Mask([1:round(cropRatio*size(Mask,1)),round((1-cropRatio)*size(Mask,1)):end],:,i) = false;
27         Mask(:,[1:round(cropRatio*size(Mask,2)),round((1-cropRatio)*size(Mask,2)):end],i) = false;
28     end
29     save(['result\' dataName '_DECOLOR.mat'],'dataName','Mask','LowRank','tau','info');
30
31
32     %% displaying
33     load(['result\' dataName '_DECOLOR.mat'],'dataName','Mask','LowRank','tau');
34     moviename = ['result\' dataName,'_DECOLOR.avi']; fps = 12;
35     mov = avifile(moviename,'fps',fps,'compression','none');
36     for i = 1:size(ImData,3)
37         figure(1); clf;
38         subplot(2,2,1);
39         imshow(ImData(:,:,i)), axis off, colormap gray; axis off;
40         title('Original image','fontsize',12);
41         subplot(2,2,2);
42         imshow(LowRank(:,:,i)), axis off,colormap gray; axis off;
43         title('Low Rank','fontsize',12);
44         subplot(2,2,3);
45         imshow(ImData(:,:,i)), axis off,colormap gray; axis off;
46         hold on; contour(Mask(:,:,i),[0 0],'y','linewidth',5);
47         title('Segmentation','fontsize',12);
48         subplot(2,2,4);
49         imshow(ImData(:,:,i).*uint8(Mask(:,:,i))), axis off, colormap gray; axis off;
50         title('Foreground','fontsize',12);
51         mov = addframe(mov,getframe(1));
52     end
53     h = close(mov);
54
55 end

 

2. ObjDetection_DECOLOR.m

  1 function [LowRank,Mask,tau,info] = ObjDetection_DECOLOR(ImData,opt)
  2 % This function use DECOLOR to detect moving objects in sequence ImData
  3 % http://arxiv.org/PS_cache/arxiv/pdf/1109/1109.0882v1.pdf
  4 % eexwzhou@ust.hk
  5 % Syntex: [LowRank,Mask,tau] = ObjDetection_DECOLOR(ImData).
  6 % Input:
  7 %   ImData -- 3D array representing a image sequence.
  8 %             Each image is stored in ImData(:,:,i).
  9 %   opt -- options. Usually, default setting is good. No need to specify.
 10 %   opt.K: desired rank of the estimated low-rank component.
 11 %          Default: \sqrt(min(size(D))) is good generally.
 12 %   opt.lambda: a constant controls the strength of smoothness regularize
 13 %               lambda ~ [1 5] is recommended. Default: 5
 14 %   opt.sigma: STD of noise in the image. If not specified, computed online
 15 %   opt.flagAlign: whether alighment is needed or not.
 16 %   opt.tol: convergence precision. Default: 1e-4
 17 % Output:
 18 %   LowRank -- Low-rank background component
 19 %   Mask -- Segmented object mask
 20 %   tau - transformation parameters to compensate for camera motion
 21 %   info -- other information
 22
 23 disp('^_^^_^^_^^_^^_^^_^ DECOLOR ^_^^_^^_^^_^^_^');
 24 tic;
 25
 26 %% default parameter setting
 27 if ~exist('opt','var'); opt = []; end
 28 if ~isfield(opt,'tol'); opt.tol = 1e-4; end
 29 if ~isfield(opt,'K'); opt.K = floor(sqrt(size(ImData,3))); end
 30 if ~isfield(opt,'lambda'); opt.lambda = 5; end % gamma = opt.lambda * beta;
 31 if ~isfield(opt,'sigma'); opt.sigma = []; end % sigma can be estimated online
 32 if ~isfield(opt,'flagAlign'); opt.flagAlign = false; end % alignment or not
 33
 34 %% variable initialize
 35 ImData = mat2gray(ImData); % 0~1
 36 ImMean = mean(ImData(:));
 37 ImData = ImData - ImMean; % subtract mean is recommended
 38 numImg = size(ImData,3);
 39 sizeImg = [size(ImData,1),size(ImData,2)];
 40 if opt.flagAlign == true && sizeImg(2) > 1
 41     disp('----------- Pre-alignment ----------');
 42     [ImTrans,tau] = preAlign(ImData);
 43     Dtau = reshape(ImTrans,prod(sizeImg),numImg);
 44 else
 45     tau = [];
 46     Dtau = reshape(ImData,prod(sizeImg),numImg);
 47 end
 48 maxOuterIts = 20;
 49 alpha = []; % Default setting by soft-impute
 50 beta = 0.5*(std(Dtau(:,1)))^2; % Start from a big value
 51 minbeta = 0.5*(3*std(Dtau(:,1))/20)^2; % lower bound: suppose SNR <= 20
 52 sigma = opt.sigma; % if empty, will be estimated online
 53 B = Dtau; % the low-rank matrix
 54 Omega = true(size(Dtau)); % background support
 55 OmegaOut = false(size(Dtau)); % OmegaOut is to record the extrapolated regions
 56 ObjArea = sum(~Omega(:));
 57 minObjArea = numel(Dtau(:,1))/1e4; % minimum number of outliers
 58
 59 % graph cuts initialization
 60 % GCO toolbox is called
 61 if opt.lambda > 0
 62     hMRF = GCO_Create(prod(sizeImg),2);
 63     GCO_SetSmoothCost( hMRF, [0 1;1 0] );
 64     AdjMatrix = getAdj(sizeImg);
 65     amplify = 10 * opt.lambda;
 66     GCO_SetNeighbors( hMRF, amplify * AdjMatrix );
 67 end
 68
 69 %% outer loop
 70 energy_old = inf; % total energy
 71 for outerIts = 1:maxOuterIts
 72     disp(['---------------- Outer Loop:  ' num2str(outerIts) ' ----------------']);
 73
 74     %% update tau
 75     if opt.flagAlign == true && sizeImg(2) > 1
 76         disp('*** Estimate Transformation ***');
 77         for i = 1:numImg
 78             % update once
 79             [Iwarp,tau(:,i),dummy,Lout] = regImg(reshape(B(:,i),sizeImg),ImData(:,:,i),tau(:,i),double(reshape(Omega(:,i),sizeImg)),1);
 80             Dtau(:,i) = reshape(Iwarp,prod(sizeImg),1);
 81             OmegaOut(:,i) = reshape(Lout,prod(sizeImg),1); % extrapolated regions
 82         end
 83     end
 84
 85     %% update B
 86     disp('*** Estimate Low-rank Matrix *** ');
 87     [B,Bnorm,alpha] = softImpute(Dtau,B,~OmegaOut&Omega,alpha,opt.K);
 88     E = Dtau - B;
 89
 90     %% estimate sigma
 91     if isempty(opt.sigma)
 92         sigma_old = sigma;
 93         residue = sort(E(~OmegaOut(:)&Omega(:)));
 94         truncate = 0.005;
 95         idx1 = round(truncate*length(residue))+1;
 96         idx2 = round((1-truncate)*length(residue));
 97         sigma = std(residue(idx1:idx2));
 98         if abs(sigma_old-sigma)/abs(sigma_old) < 0.01
 99             sigma = sigma_old;
100         end
101     end
102     % update beta
103     if ObjArea < minObjArea
104         beta = beta/2;
105     else
106         beta = min(max([beta/2,0.5*(3*sigma)^2 minbeta]),beta);
107     end
108     gamma = opt.lambda * beta;
109
110     %% estimate S = ~Omega;
111     disp('*** Estimate Outlier Support *** ');
112     disp(['$$$ beta = ' num2str(beta) '; gamma = ' num2str(gamma) '; sigma = ' num2str(sigma)]);
113     if opt.lambda > 0
114         % call GCO to run graph cuts
115         energy_cut = 0;
116         for i = 1:size(Dtau,2)
117             GCO_SetDataCost( hMRF, (amplify/gamma)*[ 0.5*(E(:,i)).^2, ~OmegaOut(:,i)*beta + OmegaOut(:,i)*0.5*max(E(:)).^2]' );
118             GCO_Expansion(hMRF);
119             Omega(:,i) = ( GCO_GetLabeling(hMRF) == 1 )';
120             energy_cut = energy_cut + double( GCO_ComputeEnergy(hMRF) );
121         end
122         ObjArea = sum(Omega(:)==0);
123         energy_cut = (gamma/amplify) * energy_cut;
124     else
125         % direct hard thresholding if no smoothness
126         Omega = 0.5*E.^2 < beta;
127         ObjArea = sum(Omega(:)==0);
128         energy_cut = 0.5*norm(Dtau-B-E,'fro')^2 + beta*ObjArea;
129     end
130
131     %% display energy
132     energy = energy_cut + alpha * Bnorm;
133     disp(['>>> the object area is ' num2str(ObjArea)]);
134     disp(['>>> the objectvive energy is ' num2str(energy)]);
135
136     %% check termination condition
137     if ObjArea > minObjArea && abs(energy_old-energy)/energy < opt.tol; break; end
138     energy_old = energy;
139
140 end
141
142 LowRank = uint8(mat2gray(reshape(B,size(ImData))+ImMean)*256);
143 Mask = reshape(~Omega,size(ImData));
144
145 info.opt = opt;
146 info.time = toc;
147 info.outerIts = outerIts;
148 info.energy = energy;
149 info.rank = rank(B);
150 info.alpha = alpha;
151 info.beta = beta;
152 info.sigma = sigma;
153
154 if opt.lambda > 0
155     GCO_Delete(hMRF);
156 end
157
158 end
159
160
161
162 %% function to get the adjcent matirx of the graph
163 function W = getAdj(sizeData)
164 numSites = prod(sizeData);
165 id1 = [1:numSites, 1:numSites, 1:numSites];
166 id2 = [ 1+1:numSites+1,...
167         1+sizeData(1):numSites+sizeData(1),...
168         1+sizeData(1)*sizeData(2):numSites+sizeData(1)*sizeData(2)];
169 value = ones(1,3*numSites);
170 W = sparse(id1,id2,value);
171 W = W(1:numSites,1:numSites);
172 end
173
174
175 %% function for soft-impute
176 function [Z,Znorm,alpha] = softImpute(X,Z,Omega,alpha0,maxRank)
177 %
178 % This program implements the soft-impute algorithm followed by
179 % postprocessing in the Matrix completion paper Mazumder'10 IJML
180 % min || Z - X ||_Omega + \alpha || Z ||_Nulear
181 % \alpha is decrease from alpha0 to the minima value that makes rank(Z) <= maxRank
182
183 % X is the incomplete matrix
184 % maxRank is the desired rank in the constraint
185 % Omega is the mask with value 1 for data and 0 for missing part
186 if isempty(Z)
187     Z = X;
188 end
189 if isempty(Omega)
190     Omega = true(size(X));
191 end
192 if isempty(alpha0)
193     [U,D] = svd(X,'econ');
194     alpha0 = D(2,2);
195 end
196 if isempty(maxRank)
197     maxRank = -1;
198 end
199 % parameters
200 eta = 0.707;
201 epsilon = 1e-4;
202 maxInnerIts = 20;
203 %% trivial
204 % no rank constraint
205 if maxRank >= min(size(X))
206     Z = X;
207     [U,D] = svd(Z,'econ');
208     Znorm = sum(diag(D));
209     alpha = 0;
210     return;
211 end
212 % no observation
213 if sum(Omega(:)) == 0
214     % no data
215     Z = zeros(size(X));
216     Znorm = 0;
217     alpha = alpha0;
218     return;
219 end
220 %% soft-impute
221 % 1. initialize
222 outIts = 0;
223 alpha = alpha0;
224 % 2. Do for alpha = alpha0 > alpha_1 > alpha_2 > ... > alpha_maxRank
225 disp('begin soft-impute iterations');
226 while 1
227     outIts = outIts + 1;
228     energy = inf;
229     for innerIts = 1:maxInnerIts
230         % (a)i
231         C = X.*Omega + Z.*(1-Omega);
232         [U,D,V] = svd(C,'econ');
233         VT = V';
234         % soft impute
235         d = diag(D);
236         idx = find(d > alpha);
237         Z = U(:,idx) * diag( d(idx) - alpha ) * VT(idx,:);
238         % (a)ii
239         Znorm = sum(d(idx)-alpha);
240         energy_old = energy;
241         energy = alpha*Znorm + norm(Z(Omega(:))-X(Omega(:)),'fro')/2;
242         if abs(energy - energy_old) / energy_old < epsilon
243             break
244         end
245     end
246     % check termination condition of alpha
247     k = length(idx); % rank of Z
248     disp(['alpha = ' num2str(alpha) ';    rank = ' num2str(k) ';  number of iteration: ' num2str(innerIts)]);
249     if k <= maxRank && alpha > 1e-3
250         alpha = alpha*eta;
251     else
252         break;
253     end
254 end
255 end

 

 

 

 

 

 

 

 

 

 

 

时间: 2024-10-13 18:41:20

论文阅读之 DECOLOR: Moving Object Detection by Detecting Contiguous Outliers in the Low-Rank Representation的相关文章

论文阅读:Prominent Object Detection and Recognition: A Saliency-based Pipeline

论文阅读:Prominent Object Detection and Recognition: A Saliency-based Pipeline    如上图所示,本文旨在解决一个问题:给定一张图像,我们最应该关注哪些区域?怎么将其分割出来?这是一个什么东东?这三个子问题为一体.   Problem formulation: Given an image, determine the most influential item in the scene in terms of region

论文阅读之: Hierarchical Object Detection with Deep Reinforcement Learning

  Hierarchical Object Detection with Deep Reinforcement Learning NIPS 2016 WorkShop    Paper : https://arxiv.org/pdf/1611.03718v1.pdf Project Page : https://github.com/imatge-upc/detection-2016-nipsws   摘要: 我们提出一种基于深度强化学习的等级物体检测方法 (Hierarchical Objec

论文阅读之:Is Faster R-CNN Doing Well for Pedestrian Detection?

  Is Faster R-CNN Doing Well for Pedestrian Detection? ECCV 2016   Liliang Zhang & Kaiming He     原文链接:http://arxiv.org/pdf/1607.07032v2.pdf Code : https://github.com/zhangliliang/RPN_BF/tree/RPN-pedestrian     摘要:行人检测被人 argue 说是特定课题,而不是general 的物体检测

谷歌Borg论文阅读笔记(一)——分布式架构

传说中,Borg之前号称是Google内部和PageRanking相提并论的同等重量级的东西.现在公布了篇论文,读了一部分,还是有些地方没理解. 求讨论. Borg简介: Borg的作用是:提供一个标准任务规格语言,集成名字服务,实时任务监控,以及工具来分析和模拟系统行为. Google内部的集群管理系统调用都是用Borg来admits(准入),schedules(调度),starts,restarts,Borg还监控所有Google所有范围运行的应用. Borg的好处: 隐藏资源管理和故障处理

Apache Spark源码走读(一)Spark论文阅读笔记&amp;Job提交与运行

<一>Spark论文阅读笔记 楔子 源码阅读是一件非常容易的事,也是一件非常难的事.容易的是代码就在那里,一打开就可以看到.难的是要通过代码明白作者当初为什么要这样设计,设计之初要解决的主要问题是什么. 在对Spark的源码进行具体的走读之前,如果想要快速对Spark的有一个整体性的认识,阅读Matei Zaharia做的Spark论文是一个非常不错的选择. 在阅读该论文的基础之上,再结合Spark作者在2012 Developer Meetup上做的演讲Introduction to Spa

谷歌Borg论文阅读笔记(二)——任务混部的解决

总算又往下读了一部分.Google的Borg论文中,前面部分讲的都是Borg的架构.后面有讲了一些资源隔离,安全隔离等的技术方案和策略. 主机层面的资源隔离,都是由是Borglet来操纵的. Google的混部情况: Google几乎所有的机器都是混部的,在一台机器上,可能运行着不同jobs的tasks.根据论文中所说,Google的50%的机器运行了9个甚至更多的tasks.90%的机器运行着25个tasks,达到4500个线程. 因此,Google有完善的隔离技术来保证task之间不相互影响

【独家】深度学习论文阅读路线图

如果你是深度学习领域的一名新手,可能会遇到的第一个问题是"应该从哪篇论文开始读起呢?" 这里给出了深度学习论文阅读路线图! 路线图按照下面四个准则构建而成: 从提纲到细节 从经典到前沿 从通用领域到特定领域 专注于最先进的技术 你将会发现很多近期发表但是确实值得一读的论文. 我们将持续不断的给这条路线图添加论文. 1 深度学习历史和基础 1.0  书籍 1.1调查 1.2 深度信念网络(DBN) (深度学习开篇的里程碑) 1.3 ImageNet进展(深度学习从此爆发) 1.4语音识别

Paper Reading: Perceptual Generative Adversarial Networks for Small Object Detection

Perceptual Generative Adversarial Networks for Small Object Detection 2017-07-11  19:47:46   CVPR 2017   This paper use GAN to handle the issue of small object detection which is a very hard problem in general object detection. As shown in the follow

深度学习论文阅读路线图

1.深度学习历史和基础 1.0  书籍 1.1调查 1.2 深度信念网络(DBN) (深度学习开篇的里程碑) 1.3 ImageNet进展(深度学习从此爆发) 1.4语音识别进展 阅读完上面这些论文后,通过对深度学习模型(包括CNN,RNN,LSTM)的基础框架,以及深度学习如何应用于图像和语音识别问题的理解,你将会对深度学习的历史有一个基本的认识.下面的论文将带你深入理解深度学习模型,深度学习在不同领域的应用和前沿.我们建议你根据自己的兴趣和研究方向选择下面的论文进行阅读. 2深度学习方法 2