[物理学与PDEs]第5章习题7 各向同性材料时稳定性条件的等价条件

在线性弹性时, 证明各向同性材料, 稳定性条件 (5. 27) 等价于 Lam\'e 常数满足 $$\bex \mu>0,\quad \lm+\cfrac{2}{3}\mu>0.  \eex$$

 

证明:

 

(1)  写出 $$\beex \bea \sum_{i,j,k,l} a_{ijkl}e_{ij}e_{kl} &=\sum_{i,j,k,l}\sez{ \lm \delta_{ij}\delta_{kl} +\mu\sex{ \delta_{ik}\delta_{jl} +\delta_{il}\delta_{jk} }}e_{ij}e_{kl}\\ &=\lm \sum_ie_{ii}\sum_ke_{kk} +\mu\sum_{ij}e_{ij}e_{ij} +\mu\sum_{ij}e_{ij}e_{ji}\\ &=\lm\sex{\sum_ie_{ii}}^2 +2\mu\sum_{i,j}e_{ij}^2.  \eea \eeex$$

 

(2)  若 $\lm>0$, 则 $$\bex \sum_{i,j,k,l} a_{ijkl}e_{ij}e_{kl}\geq 2\mu|{\bf E}|^2; \eex$$ 若 $\lm<0$, 则 $$\bex \sum_{i,j,k,l} a_{ijkl}e_{ij}e_{kl}\geq 3\lm\sum_ie_{ii}^2+2\mu\sum_{i,j}e_{ij}^2 \geq (2\mu+3\lm)|{\bf E}|^2.  \eex$$

 

(3)  $\ra$: 取 ${\bf E}=\sex{\ba{ccc} 0&1&0\\ 1&0&0\\ 0&0&0 \ea}$, 有 $$\bex \sum_{i,j,k,l} a_{ijkl}e_{ij}e_{kl}=4\mu>0; \eex$$ 取 ${\bf E}=\sex{\ba{ccc} 1&0&0\\ 0&1&0\\ 0&0&1 \ea}$, 有 $$\bex \sum_{i,j,k,l} a_{ijkl}e_{ij}e_{kl}=9\lm+6\mu>0.  \eex$$

时间: 2024-10-15 02:53:35

[物理学与PDEs]第5章习题7 各向同性材料时稳定性条件的等价条件的相关文章

[物理学与PDEs]第5章习题6 各向同性材料时强椭圆性条件的等价条件

在线性弹性时, 证明各向同性材料, 强椭圆性条件 (5. 6) 等价于 Lam\'e 常数满足 $$\bex \mu>0,\quad \lm+2\mu>0.  \eex$$   证明:   (1)  对各向同性材料, $$\beex \bea a_{ijkl}&=\lm\delta_{ij}\delta_{kl} +\mu\sex{\delta_{ik}\delta_{jl}+\delta_{il}\delta_{jk}},\\ \sum_{i,j,k,l}a_{ijkl}\xi_i\

[物理学与PDEs]第2章习题1 无旋时的 Euler 方程

试证明: 当流场为无旋, 即 $\rot{\bf u}={\bf 0}$ 时, 理想流体的 Euler 方程可写为如下形式: $$\bex \cfrac{\p {\bf u}}{\p t}+\n \cfrac{u^2}{2}+\cfrac{1}{\rho}\n p={\bf F}. \eex$$   证明: 仅须注意到 $$\bex ({\bf u}\cdot\n){\bf u}=\Div({\bf u}\otimes{\bf u})= (\Div{\bf u}){\bf u}+\rot{\bf

[物理学与PDEs]第5章习题5 超弹性材料中客观性假设的贮能函数表达

设超弹性材料的贮能函数 $\hat W$ 满足 (4. 19) 式, 证明由它决定的 Cauchy 应力张量 ${\bf T}$ 满足各向同性假设 (4. 7) 式.   证明: 若贮能函数 $W$ 满足 ``$\hat W({\bf F}{\bf Q})=W({\bf F})$ 对任意正交阵 ${\bf Q}$'', 则 $$\beex \bea p_{ij}({\bf F})&=\cfrac{\p \hat W({\bf F})}{\p f_{ij}}\\ &=\cfrac{\p \h

[物理学与PDEs]第1章习题11 各向同性导体中电荷分布的指数衰减

在各向同性的导体中, Ohm 定律具有如下形式: $$\bex {\bf j}=\sigma {\bf E}, \eex$$ 其中 $\sigma$ 称为电导率. 试证在真空中导体的连续性方程为 $$\bex \cfrac{\p \rho}{\p t}+\cfrac{\sigma}{\ve_0}\rho=0.  \eex$$ 由此证明导体内的任何电荷分布均随时间的增加而指数地衰减到零.   证明: 由 $$\bex 0=\cfrac{\p\rho}{\p t}+\Div{\bf j} =\cfr

[物理学与PDEs]第1章习题参考解答

[物理学与PDEs]第1章习题1 无限长直线的电场强度与电势   [物理学与PDEs]第1章习题2 均匀带电球面的电场强度与电势   [物理学与PDEs]第1章习题3 常场强下电势的定解问题   [物理学与PDEs]第1章习题4 偶极子的极限电势   [物理学与PDEs]第1章习题5 偶极子的电场强度   [物理学与PDEs]第1章习题6 无限长载流直线的磁场   [物理学与PDEs]第1章习题7 载流线圈的磁场   [物理学与PDEs]第1章习题8 磁场分布 $\ra$ 电流分布    [物理

[物理学与PDEs]第2章习题参考解答

[物理学与PDEs]第2章习题1 无旋时的 Euler 方程   [物理学与PDEs]第2章习题2 质量力有势时的能量方程   [物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题   [物理学与PDEs]第2章习题4 习题 3 的变分   [物理学与PDEs]第2章习题5 正应力的平均值   [物理学与PDEs]第2章习题6 有旋的 Navier-Stokes 方程组   [物理学与PDEs]第2章习题7 一维不可压理想流体的求解   [物理学与PDEs]第2章习题8

[物理学与PDEs]第4章习题参考解答

[物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程   [物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程   [物理学与PDEs]第4章习题3 一维理想反应流体力学方程组的数学结构   [物理学与PDEs]第4章习题4 一维理想反应流体力学方程组的守恒律形式及其 R.H. 条件

[物理学与PDEs]第3章习题参考解答

[物理学与PDEs]第3章习题1 只有一个非零分量的磁场   [物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿沿流线的一个守恒量   [物理学与PDEs]第3章习题3电磁场的矢势在 Lorentz 规范下满足的方程   [物理学与PDEs]第3章习题4 理想磁流体的能量守恒方程   [物理学与PDEs]第3章习题5 一维理想磁流体力学方程组的数学结构   [物理学与PDEs]第3章习题6 Lagrange 坐标下的一维理想磁流体力学方程组的数学结构   [物理学与PDEs]

[物理学与PDEs]第4章习题4 一维理想反应流体力学方程组的守恒律形式及其 R.H. 条件

写出在忽略粘性与热传导性, 即设 $\mu=\mu'=\kappa=0$ 的情况, 在 Euler 坐标系下具守恒律形式的一维反应流动力学方程组. 由此求出在解的强间断线上应满足的 R.H. 条件 (见第二章 $\S 4$), 并证明越过强间断线, 函数 $Z$ 保持连续.   解答:   (1)  具守恒律形式的一维反应流动力学方程组为 $$\beex \bea \cfrac{\p \rho}{\p t}+\cfrac{\p}{\p x}(\rho u)&=0,\\ \cfrac{\p}{\p