[物理学与PDEs]第1章习题4 偶极子的极限电势

对在 $P_0$ 及 $P_1$ 处分别置放 $-q$ 及 $+q$ 的点电荷所形成的电偶极子, 其偶极距 ${\bf m}=q{\bf l}$, ${\bf l}=\vec{P_0P_1}$. 试证明当 $l\to 0$, $q\to+\infty$, 但 $m=ql$ 保持不变时, 此偶极子产生的电场的电势为 $$\bex \phi(P)=-\cfrac{1}{4\pi\ve_0}{\bf m}\cdot\n_P\sex{\cfrac{1}{r_{P_0P}}}, \eex$$ 其中 $\n_P$ 表示关于 $P$ 点的梯度.

 

证明: $$\beex \bea \phi(P)&=\lim_{l\to0,q\to+\infty\atop m=ql\mbox{ 不变}} \sez{\cfrac{1}{4\pi\ve_0}\cfrac{-q}{r_{P_0P}} +\cfrac{1}{4\pi\ve_0}\cfrac{q}{r_{P_1P}}} =\cfrac{qr_{P_0P_1}}{4\pi\ve_0} \lim_{l\to0,q\to+\infty\atop m=ql\mbox{ 不变}} \cfrac{\cfrac{1}{r_{P_1P}}-\cfrac{1}{r_{P_0P}}}{r_{P_0P_1}}\\ &=\cfrac{qr_{P_0P_1}}{4\pi\ve_0}\cfrac{\p}{\p l}\sex{\cfrac{1}{r_{QP}}}|_{Q=P_0} =\cfrac{qr_{P_0P_1}}{4\pi\ve_0} \cfrac{{\bf l}}{l}\cdot\n_Q\sex{\cfrac{1}{r_{QP}}}|_{Q=P_0}\\ &=-\cfrac{1}{4\pi\ve_0} {\bf m}\cdot\n_P\sex{\cfrac{1}{r_{QP}}}|_{Q=P_0} =-\cfrac{1}{4\pi\ve_0}{\bf m}\cdot\n_P\sex{\cfrac{1}{r_{P_0P}}}. \eea \eeex$$

时间: 2024-10-12 10:16:03

[物理学与PDEs]第1章习题4 偶极子的极限电势的相关文章

[物理学与PDEs]第1章习题5 偶极子的电场强度

试计算由习题 4 给出的电偶极子的所形成的电场的电场强度. 解答: $$\beex \bea {\bf E}(P)&=\cfrac{1}{4\pi\ve_0} \sez{\cfrac{-q}{r_{P_0P}^3}{\bf r}_{P_0P}+\cfrac{q}{r_{P_1P}^3}{\bf r}_{P_1P}}\\ &=\cfrac{q}{4\pi \ve_0} \sez{ \sex{-\cfrac{1}{r_{P_0P}^3}+\cfrac{1}{r_{P_0P}^3}}{\bf r

[物理学与PDEs]第1章习题9 磁偶极矩的极限矢势

设在发现为 ${\bf n}$ 的平面上, 有一电流强度为 $I$ 的环形电流, 其方向与 ${\bf n}$ 成右手系. 又设该环形电流所围的面积为 $S_0$, 则 $$\bex {\bf m}=IS_0{\bf n} \eex$$ 称为该环形电流的磁偶极矩. 试证明: 当 $S_0\to0$ (环收缩到一点), $I\to+\infty$, 但 ${\bf n}$ 和 $m=IS_0$ 保持不变时, 由该磁偶极矩产生的磁场的矢势为 $$\bex {\bf A}(P)=-\cfrac{\mu

[物理学与PDEs]第1章习题参考解答

[物理学与PDEs]第1章习题1 无限长直线的电场强度与电势   [物理学与PDEs]第1章习题2 均匀带电球面的电场强度与电势   [物理学与PDEs]第1章习题3 常场强下电势的定解问题   [物理学与PDEs]第1章习题4 偶极子的极限电势   [物理学与PDEs]第1章习题5 偶极子的电场强度   [物理学与PDEs]第1章习题6 无限长载流直线的磁场   [物理学与PDEs]第1章习题7 载流线圈的磁场   [物理学与PDEs]第1章习题8 磁场分布 $\ra$ 电流分布    [物理

[物理学与PDEs]第2章习题参考解答

[物理学与PDEs]第2章习题1 无旋时的 Euler 方程   [物理学与PDEs]第2章习题2 质量力有势时的能量方程   [物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题   [物理学与PDEs]第2章习题4 习题 3 的变分   [物理学与PDEs]第2章习题5 正应力的平均值   [物理学与PDEs]第2章习题6 有旋的 Navier-Stokes 方程组   [物理学与PDEs]第2章习题7 一维不可压理想流体的求解   [物理学与PDEs]第2章习题8

[物理学与PDEs]第4章习题参考解答

[物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程   [物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程   [物理学与PDEs]第4章习题3 一维理想反应流体力学方程组的数学结构   [物理学与PDEs]第4章习题4 一维理想反应流体力学方程组的守恒律形式及其 R.H. 条件

[物理学与PDEs]第3章习题参考解答

[物理学与PDEs]第3章习题1 只有一个非零分量的磁场   [物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿沿流线的一个守恒量   [物理学与PDEs]第3章习题3电磁场的矢势在 Lorentz 规范下满足的方程   [物理学与PDEs]第3章习题4 理想磁流体的能量守恒方程   [物理学与PDEs]第3章习题5 一维理想磁流体力学方程组的数学结构   [物理学与PDEs]第3章习题6 Lagrange 坐标下的一维理想磁流体力学方程组的数学结构   [物理学与PDEs]

[物理学与PDEs]第4章习题4 一维理想反应流体力学方程组的守恒律形式及其 R.H. 条件

写出在忽略粘性与热传导性, 即设 $\mu=\mu'=\kappa=0$ 的情况, 在 Euler 坐标系下具守恒律形式的一维反应流动力学方程组. 由此求出在解的强间断线上应满足的 R.H. 条件 (见第二章 $\S 4$), 并证明越过强间断线, 函数 $Z$ 保持连续.   解答:   (1)  具守恒律形式的一维反应流动力学方程组为 $$\beex \bea \cfrac{\p \rho}{\p t}+\cfrac{\p}{\p x}(\rho u)&=0,\\ \cfrac{\p}{\p

[物理学与PDEs]第3章习题3电磁场的矢势在 Lorentz 规范下满足的方程

设 $\phi$ 及 ${\bf A}$ 分别为电磁场的标势及矢势 (见第一章 $\S$ 6). 试证明: 若 $\phi$ 及 ${\bf A}$ 满足条件 $$\bex \phi+\cfrac{1}{\sigma \mu_0}\Div{\bf A}=0, \eex$$ 则方程 (2. 32) 可写为如下的形式: $$\bex \cfrac{\p {\bf A}}{\p t}={\bf u}\times\rot{\bf A}+\cfrac{1}{\sigma\mu_0}\lap{\bf A}.

[物理学与PDEs]第2章习题5 正应力的平均值

设流场中流体的应力张量为 ${\bf P}=(p_{ij})$. 试证明: 在以某点为中心, $r$ 为半径的球面 $S_r$ 上的法向应力分量的平均值, 在 $r\to 0$ 时的极限为该点正应力的平均值, 即成立 $$\bex \lim_{r\to 0}\cfrac{1}{4\pi r^2}\int_{S_r}{\bf p}_n\cdot{\bf n}\rd S =\cfrac{1}{3}(p_{11}+p_{22}+p_{33}), \eex$$ 其中 ${\bf p}_n$ 由 (2.