memcached全面剖析4. memcached的分布式算法

本系列文章导航

memcached完全剖析1. memcached的基础

memcached全面剖析2.理解memcached的内存存储

memcached全面剖析3.memcached的删除机制和发展方向

memcached全面剖析4. memcached的分布式算法

memcached全面剖析5. memcached的应用和兼容程序

发表日:2008/7/23
作者:长野雅广(Masahiro Nagano)
原文链接:http://gihyo.jp/dev/feature/01/memcached/0004

我是Mixi的长野。 第2次、 第3次 由前坂介绍了memcached的内部情况。本次不再介绍memcached的内部结构,开始介绍memcached的分布式。

memcached的分布式

正如第1次中介绍的那样, memcached虽然称为“分布式”缓存服务器,但服务器端并没有“分布式”功能。服务器端仅包括 第2次、 第3次 前坂介绍的内存存储功能,其实现非常简单。至于memcached的分布式,则是完全由客户端程序库实现的。这种分布式是memcached的最大特点。

memcached的分布式是什么意思?

这里多次使用了“分布式”这个词,但并未做详细解释。现在开始简单地介绍一下其原理,各个客户端的实现基本相同。

下面假设memcached服务器有node1~node3三台,应用程序要保存键名为“tokyo”“kanagawa”“chiba”“saitama”“gunma” 的数据。

图1 分布式简介:准备

首先向memcached中添加“tokyo”。将“tokyo”传给客户端程序库后,客户端实现的算法就会根据“键”来决定保存数据的memcached服务器。服务器选定后,即命令它保存“tokyo”及其值。

图2 分布式简介:添加时

同样,“kanagawa”“chiba”“saitama”“gunma”都是先选择服务器再保存。

接下来获取保存的数据。获取时也要将要获取的键“tokyo”传递给函数库。函数库通过与数据保存时相同的算法,根据“键”选择服务器。使用的算法相同,就能选中与保存时相同的服务器,然后发送get命令。只要数据没有因为某些原因被删除,就能获得保存的值。

图3 分布式简介:获取时

这样,将不同的键保存到不同的服务器上,就实现了memcached的分布式。 memcached服务器增多后,键就会分散,即使一台memcached服务器发生故障无法连接,也不会影响其他的缓存,系统依然能继续运行。

接下来介绍第1次 中提到的Perl客户端函数库Cache::Memcached实现的分布式方法。

Cache::Memcached的分布式方法

Perl的memcached客户端函数库Cache::Memcached是 memcached的作者Brad Fitzpatrick的作品,可以说是原装的函数库了。

Cache::Memcached - search.cpan.org

该函数库实现了分布式功能,是memcached标准的分布式方法。

根据余数计算分散

Cache::Memcached的分布式方法简单来说,就是“根据服务器台数的余数进行分散”。求得键的整数哈希值,再除以服务器台数,根据其余数来选择服务器。

下面将Cache::Memcached简化成以下的Perl脚本来进行说明。

use strict;

use warnings;

use String::CRC32;

my @nodes = ('node1','node2','node3');

my @keys = ('tokyo', 'kanagawa', 'chiba', 'saitama', 'gunma');

foreach my $key (@keys) {

my $crc = crc32($key); # CRC

my $mod = $crc % ( $#nodes + 1 );

my $server = $nodes[ $mod ]; # 根据余数选择服务器

printf "%s => %s\n", $key, $server;

}

Cache::Memcached在求哈希值时使用了CRC。

String::CRC32 - search.cpan.org

首先求得字符串的CRC值,根据该值除以服务器节点数目得到的余数决定服务器。上面的代码执行后输入以下结果:

tokyo => node2

kanagawa => node3

chiba => node2

saitama => node1

gunma => node1

根据该结果,“tokyo”分散到node2,“kanagawa”分散到node3等。多说一句,当选择的服务器无法连接时,Cache::Memcached会将连接次数添加到键之后,再次计算哈希值并尝试连接。这个动作称为rehash。不希望rehash时可以在生成Cache::Memcached对象时指定“rehash => 0”选项。

根据余数计算分散的缺点

余数计算的方法简单,数据的分散性也相当优秀,但也有其缺点。那就是当添加或移除服务器时,缓存重组的代价相当巨大。添加服务器后,余数就会产生巨变,这样就无法获取与保存时相同的服务器,从而影响缓存的命中率。用Perl写段代码来验证其代价。

use strict;

use warnings;

use String::CRC32;

my @nodes = @ARGV;

my @keys = ('a'..'z');

my %nodes;

foreach my $key ( @keys ) {

my $hash = crc32($key);

my $mod = $hash % ( $#nodes + 1 );

my $server = $nodes[ $mod ];

push @{ $nodes{ $server } }, $key;

}

foreach my $node ( sort keys %nodes ) {

printf "%s: %s\n", $node, join ",", @{ $nodes{$node} };

}

这段Perl脚本演示了将“a”到“z”的键保存到memcached并访问的情况。将其保存为mod.pl并执行。

首先,当服务器只有三台时:

$ mod.pl node1 node2 nod3

node1: a,c,d,e,h,j,n,u,w,x

node2: g,i,k,l,p,r,s,y

node3: b,f,m,o,q,t,v,z

结果如上,node1保存a、c、d、e……,node2保存g、i、k……,每台服务器都保存了8个到10个数据。

接下来增加一台memcached服务器。

$ mod.pl node1 node2 node3 node4

node1: d,f,m,o,t,v

node2: b,i,k,p,r,y

node3: e,g,l,n,u,w

node4: a,c,h,j,q,s,x,z

添加了node4。可见,只有d、i、k、p、r、y命中了。像这样,添加节点后键分散到的服务器会发生巨大变化。26个键中只有六个在访问原来的服务器,其他的全都移到了其他服务器。命中率降低到23%。在Web应用程序中使用memcached时,在添加memcached服务器的瞬间缓存效率会大幅度下降,负载会集中到数据库服务器上,有可能会发生无法提供正常服务的情况。

mixi的Web应用程序运用中也有这个问题,导致无法添加memcached服务器。但由于使用了新的分布式方法,现在可以轻而易举地添加memcached服务器了。这种分布式方法称为 Consistent Hashing。

Consistent Hashing

关于Consistent Hashing的思想,mixi株式会社的开发blog等许多地方都介绍过,这里只简单地说明一下。

mixi Engineers' Blog - スマトな分散で快キャッシュライフ ConsistentHashing - コンシステント ハッシュ法Consistent Hashing的简单说明

Consistent Hashing如下所示:首先求出memcached服务器(节点)的哈希值,并将其配置到0~232的圆(continuum)上。然后用同样的方法求出存储数据的键的哈希值,并映射到圆上。然后从数据映射到的位置开始顺时针查找,将数据保存到找到的第一个服务器上。如果超过232仍然找不到服务器,就会保存到第一台memcached服务器上。

图4 Consistent Hashing:基本原理

从上图的状态中添加一台memcached服务器。余数分布式算法由于保存键的服务器会发生巨大变化而影响缓存的命中率,但Consistent Hashing中,只有在continuum上增加服务器的地点逆时针方向的第一台服务器上的键会受到影响。

图5 Consistent Hashing:添加服务器

因此,Consistent Hashing最大限度地抑制了键的重新分布。而且,有的Consistent Hashing的实现方法还采用了虚拟节点的思想。使用一般的hash函数的话,服务器的映射地点的分布非常不均匀。因此,使用虚拟节点的思想,为每个物理节点(服务器)在continuum上分配100~200个点。这样就能抑制分布不均匀,最大限度地减小服务器增减时的缓存重新分布。

通过下文中介绍的使用Consistent Hashing算法的memcached客户端函数库进行测试的结果是,由服务器台数(n)和增加的服务器台数(m)计算增加服务器后的命中率计算公式如下:

(1 - n/(n+m)) * 100

支持Consistent Hashing的函数库

本连载中多次介绍的Cache::Memcached虽然不支持Consistent Hashing,但已有几个客户端函数库支持了这种新的分布式算法。第一个支持Consistent Hashing和虚拟节点的memcached客户端函数库是名为libketama的PHP库,由last.fm开发。

libketama - a consistent hashing algo for memcache clients – RJ ブログ - Users at Last.fm

至于Perl客户端,连载的第1次 中介绍过的Cache::Memcached::Fast和Cache::Memcached::libmemcached支持 Consistent Hashing。

Cache::Memcached::Fast - search.cpan.org Cache::Memcached::libmemcached - search.cpan.org

两者的接口都与Cache::Memcached几乎相同,如果正在使用Cache::Memcached,那么就可以方便地替换过来。Cache::Memcached::Fast重新实现了libketama,使用Consistent Hashing创建对象时可以指定ketama_points选项。

my $memcached = Cache::Memcached::Fast->new({

servers => ["192.168.0.1:11211","192.168.0.2:11211"],

ketama_points => 150

});

另外,Cache::Memcached::libmemcached 是一个使用了Brain Aker开发的C函数库libmemcached的Perl模块。 libmemcached本身支持几种分布式算法,也支持Consistent Hashing,其Perl绑定也支持Consistent Hashing。

Tangent Software: libmemcached 总结

本次介绍了memcached的分布式算法,主要有memcached的分布式是由客户端函数库实现,以及高效率地分散数据的Consistent Hashing算法。下次将介绍mixi在memcached应用方面的一些经验,和相关的兼容应用程序。

时间: 2024-12-26 23:42:37

memcached全面剖析4. memcached的分布式算法的相关文章

艾伟:memcached全面剖析–4. memcached的分布式算法

本系列文章导航 memcached完全剖析–1. memcached的基础 memcached全面剖析–2.理解memcached的内存存储 memcached全面剖析–3.memcached的删除机制和发展方向 memcached全面剖析–4. memcached的分布式算法 memcached全面剖析–5. memcached的应用和兼容程序 asdfaaf asdfsaf 发表日:2008/7/23 作者:长野雅广(Masahiro Nagano) 原文链接:http://gihyo.jp

memcached全面剖析3.memcached的删除机制和发展方向

本系列文章导航 memcached完全剖析1. memcached的基础 memcached全面剖析2.理解memcached的内存存储 memcached全面剖析3.memcached的删除机制和发展方向 memcached全面剖析4. memcached的分布式算法 memcached全面剖析5. memcached的应用和兼容程序 下面是<memcached全面剖析>的第三部分. 发表日:2008/7/16 作者:前坂(Toru Maesaka) 原文链接:http://gihyo.jp

艾伟:memcached完全剖析–1. memcached的基础

本系列文章导航 memcached完全剖析–1. memcached的基础 memcached全面剖析–2.理解memcached的内存存储 memcached全面剖析–3.memcached的删除机制和发展方向 memcached全面剖析–4. memcached的分布式算法 memcached全面剖析–5. memcached的应用和兼容程序 asdfaaf asdfsaf 翻译一篇技术评论社的文章,是讲memcached的连载.fcicq同学说这个东西很有用,希望大家喜欢. 发表日:200

艾伟:memcached全面剖析–3.memcached的删除机制和发展方向

本系列文章导航 memcached完全剖析–1. memcached的基础 memcached全面剖析–2.理解memcached的内存存储 memcached全面剖析–3.memcached的删除机制和发展方向 memcached全面剖析–4. memcached的分布式算法 memcached全面剖析–5. memcached的应用和兼容程序 asdfaaf asdfsaf 下面是<memcached全面剖析>的第三部分. 发表日:2008/7/16 作者:前坂徹(Toru Maesaka

艾伟:memcached全面剖析–2.理解memcached的内存存储

本系列文章导航 memcached完全剖析–1. memcached的基础 memcached全面剖析–2.理解memcached的内存存储 memcached全面剖析–3.memcached的删除机制和发展方向 memcached全面剖析–4. memcached的分布式算法 memcached全面剖析–5. memcached的应用和兼容程序 asdfaaf asdfsaf 下面是<memcached全面剖析>的第二部分. 发表日:2008/7/9 作者:前坂徹(Toru Maesaka)

Memcached的配置,SSH项目中的整合(com.whalin),Memcached工具类,Memcached的代码调用

 1 修改pom.xml,添加依赖文件: <dependency>     <groupId>com.whalin</groupId>     <artifactId>Memcached-Java-Client</artifactId>     <version>3.0.2</version> </dependency> 2 添加memcached-context.xml,注意要在web.xml中进行配置

memcached实战系列(一)memcached安装

下载并安装Memcached服务器端 我用的是cenos6.5 64位系统. libevent是个程序库,它将Linux的epoll.BSD类操作系统的kqueue等事件处理功能封装成统一的接口,具有很高的性能.memcached需要依赖libevent库所以先下载安装libevent库. 1:需要安装libevent,下载地址http://download.csdn.net/detail/qq_30739519/9485589 上传到服务器.解压 tar -zxvf libevent-2.0.

memcached实战系列(三)memcached命令使用

memcached命令的使用,在这里我们最好了解一下命令的含义,对命令有一个大致的了解,在了解的基础上进行使用.这里的命名是常用的crud命令的演示. 1.1.1. memcached命令的格式 标准协议:Memcached所有的标准协议包含在对item执行命令过程中,一个item包含两行: 第一行:Key Flags ExpirationTime Bytes Key:Key 用于查找缓存值 Flags:一个32位的标志值,客户机使用它存储关于键值对的额外信息(譬如用户规定1 json 2 xm

memcached实战系列(二)memcached参数以及启动

memcached启动的时候配置的参数也比较多.在这里我就做一个汇总,需要的时候直接查看参数以及参数的含义. 下面是参数的定义以及解释. 1.1.1. 参数说明 -d选项是启动一个守护进程 -m是分配给Memcache使用的内存数量,单位是MB,这里是10MB -u是运行Memcache的用户,这里是root -l是监听的服务器IP地址,这里指定了服务器的IP地址192.168.1.106如果是多个的话逗号分隔,格式IP地址:端口号 例如-l指定192.168.0.184:19830,192.1