nginx概念理解

Nginx是什么

代理服务器:一般是指局域网内部的机器通过代理服务器发送请求到互联网上的服务器,代理服务器一般作用在客户端。应用比如:GoAgent,翻墙神器.

 

一个完整的代理请求过程为:客户端首先与代理服务器创建连接,接着根据代理服务器所使用的代理协议,请求对目标服务器创建连接、或者获得目标服务器的指定资源。 Web代理(proxy)服务器是网络的中间实体。 代理位于Web客户端和Web服务器之间,扮演“中间人”的角色。HTTP的代理服务器即是Web服务器又是Web客户端。

代理服务器是介于客户端和Web服务器之间的另一台服务器,有了它之后,浏览器不是直接到Web服务器去取回网页而是向代理服务器发出请求,信号会先送到代理服务器,由代理服务器来取回浏览器所需要的信息并传送给你的浏览器。

 正向代理 是一个位于客户端和原始服务器(origin server)之间的服务器,为了从原始服务器取得内容,客户端向代理发送一个请求并指定目标(原始服务器),然后代理向原始服务器转交请求并将获得的内容返回给客户端。客户端必须要进行一些特别的设置才能使用正向代理。

反向代理服务器:在服务器端接受客户端的请求,然后把请求分发给具体的服务器进行处理,然后再将服务器的响应结果反馈给客户端。Nginx就是其中的一种反向代理服务器软件。

NginxNginx ("engine x") Nginx (engine x是俄罗斯人Igor Sysoev(塞索耶夫)编写的一款高性能的 HTTP 和反向代理服务器。也是一个IMAP/POP3/SMTP代理服务器;也就是说,Nginx本身就可以托管网站,进行HTTP服务处理,也可以作为反向代理服务器使用。

说明:客户端必须设置正向代理服务器,当然前提是要知道正向代理服务器的IP地址,还有代理程序的端口。

反向代理正好与正向代理相反,对于客户端而言代理服务器就像是原始服务器,并且客户端不需要进行任何特别的设置。客户端向反向代理的命名空间(name-space)中的内容发送普通请求,接着反向代理将判断向何处(原始服务器)转交请求,并将获得的内容返回给客户端。

  

用户A始终认为它访问的是原始服务器B而不是代理服务器Z,但实用际上反向代理服务器接

受用户A的应答,

从原始资源服务器B中取得用户A的需求资源,然后发送给用户A。由于防火墙的作用,只允

许代理服务器Z访问原始资源服务器B。尽管在这个虚拟的环境下,防火墙和反向代理的共同

作用保护了原始资源服务器B,但用户A并不知情。 

Nginx的应用现状

Nginx 已经在俄罗斯最大的门户网站── Rambler Media(www.rambler.ru)上运行了3年时间,同时俄罗斯超过20%的虚拟主机平台采用Nginx作为反向代理服务器。

在国内,已经有 淘宝、新浪博客、新浪播客、网易新闻、六间房、56.com、Discuz!、水木社区、豆瓣、YUPOO、海内、迅雷在线 等多家网站使用 Nginx 作为Web服务器或反向代理服务器。

Nginx的特点

跨平台:Nginx 可以在大多数 Unix like OS编译运行,而且也有Windows的移植版本。

配置异常简单:非常容易上手。配置风格跟程序开发一样,神一般的配置

非阻塞、高并发连接:数据复制时,磁盘I/O的第一阶段是非阻塞的。官方测试能够支撑5万并发连接,在实际生产环境中跑到2~3万并发连接数.(这得益于Nginx使用了最新的epoll模型)

事件驱动:通信机制采用epoll模型,支持更大的并发连接。

Nginx的事件处理机制

对于一个基本的web服务器来说,事件通常有三种类型,网络事件、信号、定时器。 

首先看一个请求的基本过程:建立连接---接收数据---发送数据 。

再次看系统底层的操作 :上述过程(建立连接---接收数据---发送数据)在系统底层就是读写事件。

 1)如果采用阻塞调用的方式,当读写事件没有准备好时,必然不能够进行读写事件,那么久只好等待,等事件准备好了,才能进行读写事件。那么请求就会被耽搁 。阻塞调用会进入内核等待,cpu就会让出去给别人用了,对单线程的worker来说,显然不合适,当网络事件越多时,大家都在等待呢,cpu空闲下来没人用,cpu利用率自然上不去了,更别谈高并发了 。

  2)既然没有准备好阻塞调用不行,那么采用非阻塞方式。非阻塞就是,事件,马上返回EAGAIN,告诉你,事件还没准备好呢,你慌什么,过会再来吧。好吧,你过一会,再来检查一下事件,直到事件准备好了为止,在这期间,你就可以先去做其它事情,然后再来看看事件好了没。虽然不阻塞了,但你得不时地过来检查一下事件的状态,你可以做更多的事情了,但带来的开销也是不小的 

小结:非阻塞通过不断检查事件的状态来判断是否进行读写操作,这样带来的开销很大。 

3)因此才有了异步非阻塞的事件处理机制。具体到系统调用就是像select/poll/epoll/kqueue这样的系统调用。他们提供了一种机制,让你可以同时监控多个事件,调用他们是阻塞的,但可以设置超时时间,在超时时间之内,如果有事件准备好了,就返回。这种机制解决了我们上面两个问题。 

epoll为例:当事件没有准备好时,就放入epoll(队列)里面。如果有事件准备好了,那么就去处理;如果事件返回的是EAGAIN,那么继续将其放入epoll里面。从而,只要有事件准备好了,我们就去处理她,只有当所有时间都没有准备好时,才在epoll里面等着。这样,我们就可以并发处理大量的并发了,当然,这里的并发请求,是指未处理完的请求,线程只有一个,所以同时能处理的请求当然只有一个了,只是在请求间进行不断地切换而已,切换也是因为异步事件未准备好,而主动让出的。这里的切换是没有任何代价,你可以理解为循环处理多个准备好的事件,事实上就是这样的。 

 4)与多线程的比较:

     与多线程相比,这种事件处理方式是有很大的优势的,不需要创建线程,每个请求占用的内存也很少,没有上下文切换,事件处理非常的轻量级。并发数再多也不会导致无谓的资源浪费(上下文切换)。

小结:通过异步非阻塞的事件处理机制,Nginx实现由进程循环处理多个准备好的事件,从而实现高并发和轻量级。 

master/worker结构:一个master进程,生成一个或多个worker进程

内存消耗小:处理大并发的请求内存消耗非常小。在3万并发连接下,开启的10Nginx 进程才消耗150M内存(15M*10=150M) 成本低廉:Nginx为开源软件,可以免费使用。而购买F5 BIG-IPNetScaler等硬件负载均衡交换机则需要十多万至几十万人民币

内置的健康检查功能:如果 Nginx Proxy 后端的某台 Web 服务器宕机了,不会影响前端访问。

节省带宽:支持 GZIP 压缩,可以添加浏览器本地缓存的 Header 头。

稳定性高:用于反向代理,宕机的概率微乎其微

Nginx的不为人知的特点

1nginx代理和后端web服务器间无需长连接;

2、接收用户请求是异步的,即先将用户请求全部接收下来,再一次性发送后后端web服务器,极大的减轻后端web服务器的压力

3、发送响应报文时,是边接收来自后端web服务器的数据,边发送给客户端的

4、网络依赖型低。NGINX对网络的依赖程度非常低,理论上讲,只要能够ping通就可以实施负载均衡,而且可以有效区分内网和外网流量

5、支持服务器检测。NGINX能够根据应用服务器处理页面返回的状态码、超时信息等检测服务器是否出现故障,并及时返回错误的请求重新提交到其它节点上

Nginx的内部(进程)模型

nginx是以多进程的方式来工作的,当然nginx也是支持多线程的方式的,只是我们主流的方式还是多进程的方式,也是nginx的默认方式。nginx采用多进程的方式有诸多好处 .

 (1) nginx在启动后,会有一个master进程和多个worker进程。master进程主要用来管理worker进程,包含:接收来自外界的信号,向各worker进程发送信号,监控 worker进程的运行状态,worker进程退出后(异常情况下),会自动重新启动新的worker进程。而基本的网络事件,则是放在worker进程中来处理了 。多个worker进程之间是对等的,他们同等竞争来自客户端的请求,各进程互相之间是独立的 。一个请求,只可能在一个worker进程中处理,一个worker进程,不可能处理其它进程的请求。 worker进程的个数是可以设置的,一般我们会设置与机器cpu核数一致,这里面的原因与nginx的进程模型以及事件处理模型是分不开的 。

(2)Master接收到信号以后怎样进行处理(./nginx -s reload ?首先master进程在接到信号后,会先重新加载配置文件,然后再启动新的进程,并向所有老的进程发送信号,告诉他们可以光荣退休了。新的进程在启动后,就开始接收新的请求,而老的进程在收到来自master的信号后,就不再接收新的请求,并且在当前进程中的所有未处理完的请求处理完成后,再退出 .

(3) worker进程又是如何处理请求的呢?我们前面有提到,worker进程之间是平等的,每个进程,处理请求的机会也是一样的。当我们提供80端口的http服务时,一个连接请求过来,每个进程都有可能处理这个连接,怎么做到的呢?首先,每个worker进程都是从master进程fork过来,在master进程里面,先建立好需要listensocket之后,然后再fork出多个worker进程,这样每个worker进程都可以去accept这个socket(当然不是同一个socket,只是每个进程的这个socket会监控在同一个ip地址与端口,这个在网络协议里面是允许的)。一般来说,当一个连接进来后,所有在accept在这个socket上面的进程,都会收到通知,而只有一个进程可以accept这个连接,其它的则accept失败,这是所谓的惊群现象。当然,nginx也不会视而不见,所以nginx提供了一个accept_mutex这个东西,从名字上,我们可以看这是一个加在accept上的一把共享锁。有了这把锁之后,同一时刻,就只会有一个进程在accpet连接,这样就不会有惊群问题了。accept_mutex是一个可控选项,我们可以显示地关掉,默认是打开的。当一个worker进程在accept这个连接之后,就开始读取请求,解析请求,处理请求,产生数据后,再返回给客户端,最后才断开连接,这样一个完整的请求就是这样的了。我们可以看到,一个请求,完全由worker进程来处理,而且只在一个worker进程中处理。

(4):nginx采用这种进程模型有什么好处呢?采用独立的进程,可以让互相之间不会影响,一个进程退出后,其它进程还在工作,服务不会中断,master进程则很快重新启动新的worker进程。当然,worker进程的异常退出,肯定是程序有bug了,异常退出,会导致当前worker上的所有请求失败,不过不会影响到所有请求,所以降低了风险。当然,好处还有很多,大家可以慢慢体会。

(5).有人可能要问了,nginx采用多worker的方式来处理请求,每个worker里面只有一个主线程,那能够处理的并发数很有限啊,多少个worker就能处理多少个并发,何来高并发呢?非也,这就是nginx的高明之处,nginx采用了异步非阻塞的方式来处理请求,也就是说,nginx是可以同时处理成千上万个请求的 .对于IIS服务器每个请求会独占一个工作线程,当并发数上到几千时,就同时有几千的线程在处理请求了。这对操作系统来说,是个不小的挑战,线程带来的内存占用非常大,线程的上下文切换带来的cpu开销很大,自然性能就上不去了,而这些开销完全是没有意义的。我们之前说过,推荐设置worker的个数为cpu的核数,在这里就很容易理解了,更多的worker数,只会导致进程来竞争cpu资源了,从而带来不必要的上下文切换。而且,nginx为了更好的利用多核特性,提供了cpu亲缘性的绑定选项,我们可以将某一个进程绑定在某一个核上,这样就不会因为进程的切换带来cache的失效 

Nginx是如何处理一个请求

首先,nginx在启动时,会解析配置文件,得到需要监听的端口与ip地址,然后在nginxmaster进程里面,先初始化好这个监控的socket(创建socket,设置addrreuse等选项,绑定到指定的ip地址端口,再listen),然后再fork(一个现有进程可以调用fork函数创建一个新进程。由fork创建的新进程被称为子进程 )出多个子进程出来,然后子进程会竞争accept新的连接。此时,客户端就可以向nginx发起连接了。当客户端与nginx进行三次握手,与nginx建立好一个连接后,此时,某一个子进程会accept成功,得到这个建立好的连接的socket,然后创建nginx对连接的封装,即ngx_connection_t结构体。接着,设置读写事件处理函数并添加读写事件来与客户端进行数据的交换。最后,nginx或客户端来主动关掉连接,到此,一个连接就寿终正寝了。 

当然,nginx也是可以作为客户端来请求其它server的数据的(如upstream模块),此时,与其它server创建的连接,也封装在ngx_connection_t中。作为客户端,nginx先获取一个ngx_connection_t结构体,然后创建socket,并设置socket的属性( 比如非阻塞)。然后再通过添加读写事件,调用connect/read/write来调用连接,最后关掉连接,并释放ngx_connection_t。 

说明:nginx在实现时,是通过一个连接池来管理的,每个worker进程都有一个独立的连接池,连接池的大小是worker_connections。这里的连接池里面保存的其实不是真实的连接,它只是一个worker_connections大小的一个ngx_connection_t结构的数组。并且,nginx会通过一个链表free_connections来保存所有的空闲ngx_connection_t,每次获取一个连接时,就从空闲连接链表中获取一个,用完后,再放回空闲连接链表里面。 

在这里,很多人会误解worker_connections这个参数的意思,认为这个值就是nginx所能建立连接的最大值。其实不然,这个值是表示每个worker进程所能建立连接的最大值,所以,一个nginx能建立的最大连接数,应该是worker_connections * worker_processes。当然,这里说的是最大连接数,对于HTTP请求本地资源来说,能够支持的最大并发数量是worker_connections * worker_processes,而如果是HTTP作为反向代理来说,最大并发数量应该是worker_connections * worker_processes/2。因为作为反向代理服务器,每个并发会建立与客户端的连接和与后端服务的连接,会占用两个连接。 

Nginx典型的应用场景

负载均衡技术在现有网络结构之上提供了一种廉价、有效、透明的方法,来扩展网络设备和服务器的带宽、增加吞吐量、加强网络数据处理能力、提高网络的灵活性和可用性。它有两方面的含义:首先,大量的并发访问或数据流量分担到多台节点设备上分别处理,减少用户等待响应的时间;其次,单个重负载的运算分担到多台节点设备上做并行处理,每个节点设备处理结束后,将结果汇总,返回给用户,系统处理能力得到大幅度提高 

Nginx的应用

1、到官网下载Windows版本,下载地址:http://nginx.org/en/download.html

2、解压到磁盘任一目录

3、修改配置文件:具体参考备注。

4、启动服务:

直接运行nginx.exe,缺点控制台窗口关闭,服务关闭。

守护进程的方式启动:start nginx.exe

5、停止服务:nginx -s stop

重新加载配置:nginx -s  reload

Nginx常见配置说明

worker_processes 8;

#nginx进程数,建议设置为等于CPU总核心数

worker_connections 65535;

#单个进程最大连接数(最大连接数=连接数*进程数)

client_header_buffer_size 32k; #上传文件大小限制

large_client_header_buffers 4 64k; #设定请求缓

client_max_body_size 8m; #设定请求缓

autoindex on; #开启目录列表访问,合适下载服务器,默认关闭。

tcp_nopush on; #防止网络阻塞

tcp_nodelay on; #防止网络阻塞

keepalive_timeout 120; #长连接超时时间,单位是秒

gzip on; #开启gzip压缩输出

gzip_min_length 1k; #最小压缩文件大小

gzip_buffers 4 16k; #压缩缓冲区

gzip_http_version 1.0; #压缩版本(默认1.1,前端如果是squid2.5请使用1.0)

gzip_comp_level 2; #压缩等级

upstream blog.ha97.com {

#upstream的负载均衡,weight是权重,可以根据机器配置定义权重。weigth参数表示权值,权值越高被分配到的几率越大。

server 192.168.80.121:80 weight=3;

server 192.168.80.122:80 weight=2;

server 192.168.80.123:80 weight=3;

}

#虚拟主机的配置

server

{

#监听端口

listen 80;

#域名可以有多个,用空格隔开

server_name www.ha97.com ha97.com;

index index.html index.htm index.php;

root /data/www/ha97;

location ~ .*.(php|php5)?$

{

fastcgi_pass 127.0.0.1:9000;

fastcgi_index index.php;

include fastcgi.conf;

}

模块参数

[html] view
plain
 copy

 

  1. #定义Nginx运行的用户和用户组  
  2.   
  3. user www www;  
  4.   
  5.   
  6. #nginx进程数,建议设置为等于CPU总核心数。  
  7.   
  8. worker_processes 8;  
  9.   
  10.   
  11. #全局错误日志定义类型,[ debug | info | notice | warn | error | crit ]  
  12.   
  13. error_log ar/loginx/error.log info;  
  14.   
  15.    
  16. #进程文件  
  17.   
  18. pid ar/runinx.pid;  
  19.   
  20.    
  21. #一个nginx进程打开的最多文件描述符数目,理论值应该是最多打开文件数(系统的值ulimit -n)与nginx进程数相除,但是nginx分配请求并不均匀,  
  22. 所以建议与ulimit -n的值保持一致。  
  23.   
  24. worker_rlimit_nofile 65535;  
  25.   
  26.    
  27.   
  28. #工作模式与连接数上限  
  29.   
  30. events  
  31.   
  32. {  
  33.   
  34. #参考事件模型,use [ kqueue | rtsig | epoll | /dev/poll | select | poll ]; epoll模型是Linux 2.6以上版本内核中的高性能网络I/O模型,  
  35. 如果跑在FreeBSD上面,就用kqueue模型。  
  36.   
  37. use epoll;  
  38.   
  39. #单个进程最大连接数(最大连接数=连接数*进程数)  
  40.   
  41. worker_connections 65535;  
  42.   
  43. }  
  44.    
  45.   
  46. #设定http服务器  
  47.   
  48. http  
  49.   
  50. {  
  51.   
  52. include mime.types; #文件扩展名与文件类型映射表  
  53.   
  54. default_type application/octet-stream; #默认文件类型  
  55.   
  56. #charset utf-8; #默认编码  
  57.   
  58. server_names_hash_bucket_size 128; #服务器名字的hash表大小  
  59.   
  60. client_header_buffer_size 32k; #上传文件大小限制  
  61.   
  62. large_client_header_buffers 4 64k; #设定请求缓  
  63.   
  64. client_max_body_size 8m; #设定请求缓  
  65.   
  66. sendfile on; #开启高效文件传输模式,sendfile指令指定nginx是否调用sendfile函数来输出文件,对于普通应用设为 on,如果用来进行下载等应用磁盘IO重负载应用,  
  67. 可设置为off,以平衡磁盘与网络I/O处理速度,降低系统的负载。注意:如果图片显示不正常把这个改成off。  
  68.   
  69. autoindex on; #开启目录列表访问,合适下载服务器,默认关闭。  
  70.   
  71. tcp_nopush on; #防止网络阻塞  
  72.   
  73. tcp_nodelay on; #防止网络阻塞  
  74.   
  75. keepalive_timeout 120; #长连接超时时间,单位是秒  
  76.   
  77.    
  78.   
  79. #FastCGI相关参数是为了改善网站的性能:减少资源占用,提高访问速度。下面参数看字面意思都能理解。  
  80.   
  81. fastcgi_connect_timeout 300;  
  82.   
  83. fastcgi_send_timeout 300;  
  84.   
  85. fastcgi_read_timeout 300;  
  86.   
  87. fastcgi_buffer_size 64k;  
  88.   
  89. fastcgi_buffers 4 64k;  
  90.   
  91. fastcgi_busy_buffers_size 128k;  
  92.   
  93. fastcgi_temp_file_write_size 128k;  
  94.    
  95.   
  96. #gzip模块设置  
  97.   
  98. gzip on; #开启gzip压缩输出  
  99.   
  100. gzip_min_length 1k; #最小压缩文件大小  
  101.   
  102. gzip_buffers 4 16k; #压缩缓冲区  
  103.   
  104. gzip_http_version 1.0; #压缩版本(默认1.1,前端如果是squid2.5请使用1.0)  
  105.   
  106. gzip_comp_level 2; #压缩等级  
  107.   
  108. gzip_types text/plain application/x-javascript text/css application/xml;  
  109.   
  110. #压缩类型,默认就已经包含textml,所以下面就不用再写了,写上去也不会有问题,但是会有一个warn。  
  111.   
  112. gzip_vary on;  
  113.   
  114. #limit_zone crawler $binary_remote_addr 10m; #开启限制IP连接数的时候需要使用  
  115.   
  116.    
  117.   
  118. upstream blog.ha97.com {  
  119.   
  120. #upstream的负载均衡,weight是权重,可以根据机器配置定义权重。weigth参数表示权值,权值越高被分配到的几率越大。  
  121.   
  122. server 192.168.80.121:80 weight=3;  
  123.   
  124. server 192.168.80.122:80 weight=2;  
  125.   
  126. server 192.168.80.123:80 weight=3;  
  127.   
  128. }  
  129.   
  130.    
  131.   
  132. #虚拟主机的配置  
  133.   
  134. server  
  135.   
  136. {  
  137.   
  138. #监听端口  
  139.   
  140. listen 80;  
  141.   
  142. #域名可以有多个,用空格隔开  
  143.   
  144. server_name www.ha97.com ha97.com;  
  145.   
  146. index index.html index.htm index.php;  
  147.   
  148. root /data/www/ha97;  
  149.   
  150. location ~ .*.(php|php5)?$  
  151.   
  152. {  
  153.   
  154. fastcgi_pass 127.0.0.1:9000;  
  155.   
  156. fastcgi_index index.php;  
  157.   
  158. include fastcgi.conf;  
  159.   
  160. }  
  161.   
  162. #图片缓存时间设置  
  163.   
  164. location ~ .*.(gif|jpg|jpeg|png|bmp|swf)$  
  165.   
  166. {  
  167.   
  168. expires 10d;  
  169.   
  170. }  
  171.   
  172. #JS和CSS缓存时间设置  
  173.   
  174. location ~ .*.(js|css)?$  
  175.   
  176. {  
  177.   
  178. expires 1h;  
  179.   
  180. }  
  181.   
  182. #日志格式设定  
  183.   
  184. log_format access '$remote_addr - $remote_user [$time_local] "$request" '  
  185.   
  186. '$status $body_bytes_sent "$http_referer" '  
  187.   
  188. '"$http_user_agent" $http_x_forwarded_for';  
  189.   
  190. #定义本虚拟主机的访问日志  
  191.   
  192. access_log ar/loginx/ha97access.log access;  
  193.   
  194.    
  195.   
  196. #对 "/" 启用反向代理  
  197.   
  198. location / {  
  199.   
  200. proxy_pass http://127.0.0.1:88;  ;
  201.   
  202. proxy_redirect off;  
  203.   
  204. proxy_set_header X-Real-IP $remote_addr;  
  205.   
  206. #后端的Web服务器可以通过X-Forwarded-For获取用户真实IP  
  207.   
  208. proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;  
  209.   
  210. #以下是一些反向代理的配置,可选。  
  211.   
  212. proxy_set_header Host $host;  
  213.   
  214. client_max_body_size 10m; #允许客户端请求的最大单文件字节数  
  215.   
  216. client_body_buffer_size 128k; #缓冲区代理缓冲用户端请求的最大字节数,  
  217.   
  218. proxy_connect_timeout 90; #nginx跟后端服务器连接超时时间(代理连接超时)  
  219.   
  220. proxy_send_timeout 90; #后端服务器数据回传时间(代理发送超时)  
  221.   
  222. proxy_read_timeout 90; #连接成功后,后端服务器响应时间(代理接收超时)  
  223.   
  224. proxy_buffer_size 4k; #设置代理服务器(nginx)保存用户头信息的缓冲区大小  
  225.   
  226. proxy_buffers 4 32k; #proxy_buffers缓冲区,网页平均在32k以下的设置  
  227.   
  228. proxy_busy_buffers_size 64k; #高负荷下缓冲大小(proxy_buffers*2)  
  229.   
  230. proxy_temp_file_write_size 64k;  
  231.   
  232. #设定缓存文件夹大小,大于这个值,将从upstream服务器传  
  233.   
  234. }  
  235.   
  236.    
  237.   
  238. #设定查看Nginx状态的地址  
  239.   
  240. location /NginxStatus {  
  241.   
  242. stub_status on;  
  243.   
  244. access_log on;  
  245.   
  246. auth_basic "NginxStatus";  
  247.   
  248. auth_basic_user_file confpasswd;  
  249.   
  250. #htpasswd文件的内容可以用apache提供的htpasswd工具来产生。  
  251.   
  252. }  
  253.   
  254.    
  255.   
  256. #本地动静分离反向代理配置  
  257.   
  258. #所有jsp的页面均交由tomcat或resin处理  
  259.   
  260. location ~ .(jsp|jspx|do)?$ {  
  261.   
  262. proxy_set_header Host $host;  
  263.   
  264. proxy_set_header X-Real-IP $remote_addr;  
  265.   
  266. proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;  
  267.   
  268. proxy_pass http://127.0.0.1:8080;  ;
  269.   
  270. }  
  271.   
  272. #所有静态文件由nginx直接读取不经过tomcat或resin  
  273.   
  274. location ~ .*.(htm|html|gif|jpg|jpeg|png|bmp|swf|ioc|rar|zip|txt|flv|mid|doc|ppt|pdf|xls|mp3|wma)$  
  275.   
  276. { expires 15d; }  
  277.   
  278. location ~ .*.(js|css)?$  
  279.   
  280. { expires 1h; }  
  281.   
  282. }  
  283.   
  284. }  

更详细的模块参数请参考:http://wiki.nginx.org/Main

案例

Nginx+IIS服务器搭建服务器集群

 

配置静态资源

[html] view
plain
 copy

 

  1. location ~ \.(jpg|png|jpeg|bmp|gif|swf|css)$  
  2.         {  
  3.             expires 30d;  
  4.              root /nginx-1.4.7;#root:  
  5.             break;  
  6.         }  

扩展

负载均衡策略:http://baidutech.blog.51cto.com/4114344/1033718/ 

送 
                                            nginx 负载均衡测试

摘要:对于一个大型网站来说,负载均衡是永恒的话题。随着硬件技术的迅猛发展,越来越多的负载均衡硬件设备涌现出来,如F5 BIG-IP、Citrix NetScaler、Radware等等,虽然可以解决问题,但其高昂的价格却往往令人望而却步,因此负载均衡软件仍然是大部分公司的不二之选。nginx作为webserver的后起之秀,其优秀的反向代理功能和灵活的负载均衡策略受到了业界广泛的关注。本文将以工业生产为背景,从设计实现和具体应用等方面详细介绍nginx负载均衡策略。

关键字:nginx 负载均衡 反向代理

 

1.前言

随着互联网信息的爆炸性增长,负载均衡(load balance)已经不再是一个很陌生的话题,顾名思义,负载均衡即是将负载分摊到不同的服务单元,既保证服务的可用性,又保证响应足够快,给用户很好的体验。快速增长的访问量和数据流量催生了各式各样的负载均衡产品,很多专业的负载均衡硬件提供了很好的功能,但却价格不菲,这使得负载均衡软件大受欢迎,nginx就是其中的一个。

nginx第一个公开版本发布于2004年,2011年发布了1.0版本。它的特点是稳定性高、功能强大、资源消耗低,从其目前的市场占有而言,nginx大有与apache抢市场的势头。其中不得不提到的一个特性就是其负载均衡功能,这也成了很多公司选择它的主要原因。本文将从源码的角度介绍nginx的内置负载均衡策略和扩展负载均衡策略,以实际的工业生产为案例,对比各负载均衡策略,为nginx使用者提供参考。

2.   源码剖析

nginx的负载均衡策略可以划分为两大类:内置策略和扩展策略。内置策略包含加权轮询和ip hash,在默认情况下这两种策略会编译进nginx内核,只需在nginx配置中指明参数即可。扩展策略有很多,如fair、通用hash、consistent hash等,默认不编译进nginx内核。由于在nginx版本升级中负载均衡的代码没有本质性的变化,因此下面将以nginx1.0.15稳定版为例,从源码角度分析各个策略。

2.1.           加权轮询(weighted round robin)

轮询的原理很简单,首先我们介绍一下轮询的基本流程。如下是处理一次请求的流程图:

图中有两点需要注意,第一,如果可以把加权轮询算法分为先深搜索和先广搜索,那么nginx采用的是先深搜索算法,即将首先将请求都分给高权重的机器,直到该机器的权值降到了比其他机器低,才开始将请求分给下一个高权重的机器;第二,当所有后端机器都down掉时,nginx会立即将所有机器的标志位清成初始状态,以避免造成所有的机器都处在timeout的状态,从而导致整个前端被夯住。

接下来看下源码。nginx源码的目录结构很清晰,加权轮询所在路径为nginx-1.0.15/src/http/ngx_http_upstream_round_robin.[c|h],在源码的基础上,针对重要的、不易理解的地方我加了注释。首先看下ngx_http_upstream_round_robin.h中的重要声明:

从变量命名中,我们就可以大致猜出其作用。其中,current_weight和weight的区别主要是前者为权重排序的值,随着处理请求会动态的变化,后者是配置值,用于恢复初始状态。

接下来看下轮询的创建过程,代码如下图所示。

这里有个tried变量需要做些说明。tried中记录了服务器当前是否被尝试连接过。他是一个位图。如果服务器数量小于32,则只需在一个int中即可记录下所有服务器状态。如果服务器数量大于32,则需在内存池中申请内存来存储。对该位图数组的使用可参考如下代码:

最后是实际的策略代码,逻辑很简单,代码实现也只有30行,直接上代码。

2.2.           ip hash

ip hash是nginx内置的另一个负载均衡的策略,流程和轮询很类似,只是其中的算法和具体的策略有些变化,如下图所示:

ip hash算法的核心实现如下图:

从代码中可以看出,hash值既与ip有关又与后端机器的数量有关。经过测试,上述算法可以连续产生1045个互异的value,这是该算法的硬限制。对此nginx使用了保护机制,当经过20次hash仍然找不到可用的机器时,算法退化成轮询。因此,从本质上说,ip hash算法是一种变相的轮询算法,如果两个ip的初始hash值恰好相同,那么来自这两个ip的请求将永远落在同一台服务器上,这为均衡性埋下了很深的隐患。

2.3.           fair

fair策略是扩展策略,默认不被编译进nginx内核。其原理是根据后端服务器的响应时间判断负载情况,从中选出负载最轻的机器进行分流。这种策略具有很强的自适应性,但是实际的网络环境往往不是那么简单,因此要慎用。

2.4.           通用hash、一致性hash

这两种也是扩展策略,在具体的实现上有些差别,通用hash比较简单,可以以nginx内置的变量为key进行hash,一致性hash采用了nginx内置的一致性hash环,可以支持memcache。

3.   对比测试

本测试主要为了对比各个策略的均衡性、一致性、容灾性等,从而分析出其中的差异性,并据此给出各自的适用场景。为了能够全面、客观的测试nginx的负载均衡策略,我们采用了两个测试工具、在不同场景下做测试,以此来降低环境对测试结果造成的影响。首先简单介绍测试工具、测试网络拓扑和基本的测试流程。

3.1.           测试工具

3.1.1  easyABC

easyABC是公司内部开发的性能测试工具,采用epool模型实现,简单易上手,可以模拟GET/POST请求,极限情况下可以提供上万的压力,在公司内部得到了广泛的使用。由于被测试对象为反向代理服务器,因此需要在其后端搭建桩服务器,这里用nginx作为桩webserver,提供最基本的静态文件服务。

3.1.2  polygraph

polygraph是一款免费的性能测试工具,以对缓存服务、代理、交换机等方面的测试见长。它有规范的配置语言PGL(Polygraph Language),为软件提供了强大的灵活性。其工作原理如下图所示:

polygraph提供client端和server端,将测试目标nginx放在二者之间,三者之间的网络交互均走http协议,只需配置ip+port即可。client端可以配置虚拟robot的个数以及每个robot发请求的速率,并向代理服务器发起随机的静态文件请求,server端将按照请求的url生成随机大小的静态文件做响应。这也是选用这个测试软件的一个主要原因:可以产生随机的url作为nginx各种hash策略的key。

另外,polygraph还提供了日志分析工具,功能比较丰富,感兴趣的同学可以参考附录中的相关材料。

3.2.           测试环境

本测试运行在5台物理机上,其中被测对象单独搭在一台8核机器上,另外四台4核机器分别搭建了easyABC、webserver桩和polygraph,如下图所示:

3.3.           测试方案

首先介绍下关键的测试指标:

均衡性:是否能够将请求均匀的发送给后端

一致性:同一个key的请求,是否能落到同一台机器

容灾性:当部分后端机器挂掉时,是否能够正常工作

以上述指标为指导,我们针对如下四个测试场景分别用easyABC和polygraph进行测试:

场景1      server_*均正常提供服务;

场景2      server_4挂掉,其他正常;

场景3      server_3、server_4挂掉,其他正常;

场景4      server_*均恢复正常服务。

上述四个场景将按照时间顺序进行,每个场景将建立在上一个场景基础上,被测试对象无需做任何操作,以最大程度模拟实际情况。另外,考虑到测试工具自身的特点,在easyabc上的测试压力在17000左右,polygraph上的测试压力在4000左右。以上测试均保证被测试对象可以正常工作,且无任何notice级别以上(alert/error/warn)的日志出现,在每个场景中记录下server_*的qps用于最后的策略分析。

3.4.           测试结果

表1和图1是轮询策略在两种测试工具下的负载情况。对比在两种测试工具下的测试结果会发现,结果完全一致,因此可以排除测试工具的影响。从图表中可以看出,轮询策略对于均衡性和容灾性都可以做到很好的满足。(点击图片查看大图)

表2和图2是fair策略在两种测试工具下的负载情况。fair策略受环境影响非常大,在排除了测试工具的干扰之后,结果仍然有非常大的抖动。从直观上讲,这完全不满足均衡性。但是从另一个角度出发,恰恰是由于这种自适应性确保了在复杂的网络环境中能够物尽所用。因此,在应用到工业生产中之前,需要在具体的环境中做好测试工作。(点击图片查看大图)

以下图表是各种hash策略,所不同的仅仅是hash key或者是具体的算法实现,因此一起做对比。实际测试中发现,通用hash和一致性hash均存在一个问题:当某台后端的机器挂掉时,原有落到这台机器上的流量会丢失,但是在ip hash中就不存在这样的问题。正如上文中对ip hash源码的分析,当ip hash失效时,会退化为轮询策略,因此不会有丢失流量的情况。从这个层面上说,ip hash也可以看成是轮询的升级版。(点击图片查看大图)

图5为ip hash策略,ip hash是nginx内置策略,可以看做是前两种策略的特例:以来源ip为key。由于测试工具不便于模拟海量ip下的请求,因此这里截取线上实际的情况加以分析,如下图所示:

图5 ip hash策略

图中前1/3使用轮询策略,中间段使用ip hash策略,后1/3仍然是轮询策略。可以明显的看出,ip hash的均衡性存在着很大的问题。原因并不难分析,在实际的网络环境中,有大量的高校出口路由器ip、企业出口路由器ip等网络节点,这些节点带来的流量往往是普通用户的成百上千倍,而ip hash策略恰恰是按照ip来划分流量,因此造成上述后果也就自然而然了。

4.   总结与展望

通过实际的对比测试,我们对nginx各个负载均衡策略进行了验证。下面从均衡性、一致性、容灾性以及适用场景等角度对比各种策略。(点击图片查看大图)

以上从源码和实际的测试数据角度分析说明了nginx负载均衡的策略,并给出了各种策略适合的应用场景。通过本文的分析不难发现,无论哪种策略都不是万金油,在具体的场景下应该选择哪种策略一定程度上依赖于使用者对这些策略的熟悉程度。希望本文的分析和测试数据能够对读者有所帮助,更希望有越来越多、越来越好的负载均衡策略产出。

5.   参考资料

http://wiki.nginx.org/HttpUpstreamConsistentHash

http://wiki.nginx.org/HttpUpstreamFairModule

http://wiki.nginx.org/HttpUpstreamRequestHashModule

http://www.web-polygraph.org/

http://nginx.org/ 

nginx 配置详解

Nginx 配置文件详解

user nginx ;

#用户

worker_processes 8;

#工作进程,根据硬件调整,大于等于cpu核数

error_log logs/nginx_error.log crit;

#错误日志

pid logs/nginx.pid;

#pid放置的位置

worker_rlimit_nofile 204800;

#指定进程可以打开的最大描述符

这个指令是指当一个nginx进程打开的最多文件描述符数目,理论值应该是最多打开文

件数(ulimit -n)与nginx进程数相除,但是nginx分配请求并不是那么均匀,所以最好与ulimit -n 的值保持一致。

现在在linux 2.6内核下开启文件打开数为65535,worker_rlimit_nofile就相应应该填写65535。

这是因为nginx调度时分配请求到进程并不是那么的均衡,所以假如填写10240,总并发量达到3-4万时就有进程可能超过10240了,这时会返回502错误。

events

{

use epoll;

#使用epoll的I/O 模型

补充说明:

与apache相类,nginx针对不同的操作系统,有不同的事件模型

A)标准事件模型

Select、poll属于标准事件模型,如果当前系统不存在更有效的方法,nginx会选择select或poll

B)高效事件模型

Kqueue:使用于FreeBSD 4.1+, OpenBSD 2.9+, NetBSD 2.0 和 MacOS X.使用双处理器的MacOS X系统使用kqueue可能会造成内核崩溃。

Epoll:使用于Linux内核2.6版本及以后的系统。

/dev/poll:使用于Solaris 7 11/99+, HP/UX 11.22+ (eventport), IRIX 6.5.15+ 和 Tru64 UNIX 5.1A+。

Eventport:使用于Solaris 10. 为了防止出现内核崩溃的问题, 有必要安装安全补丁

worker_connections 204800;

#工作进程的最大连接数量,根据硬件调整,和前面工作进程配合起来用,尽量大,但是别把cpu跑到100%就行

每个进程允许的最多连接数, 理论上每台nginx服务器的最大连接数为worker_processes*worker_connections

keepalive_timeout 60;

keepalive超时时间。

client_header_buffer_size 4k;

客户端请求头部的缓冲区大小,这个可以根据你的系统分页大小来设置,一般一个请求头的大小不会超过1k,不过由于一般系统分页都要大于1k,所以这里设置为分页大小。

分页大小可以用命令getconf PAGESIZE 取得。

[root@web001 ~]# getconf PAGESIZE

4096

但也有client_header_buffer_size超过4k的情况,但是client_header_buffer_size该值必须设置为“系统分页大小”的整倍数。

open_file_cache max=65535 inactive=60s;

这个将为打开文件指定缓存,默认是没有启用的,max指定缓存数量,建议和打开文件数一致,inactive是指经过多长时间文件没被请求后删除缓存。

open_file_cache_valid 80s;

这个是指多长时间检查一次缓存的有效信息。

open_file_cache_min_uses 1;

open_file_cache指令中的inactive参数时间内文件的最少使用次数,如果超过这个数字,文件描述符一直是在缓存中打开的,如上例,如果有一个文件在inactive时间内一次没被使用,它将被移除。

}

#设定http服务器,利用它的反向代理功能提供负载均衡支持

http

{

include mime.types;

#设定mime类型,类型由mime.type文件定义

default_type application/octet-stream;

log_format main '$host $status [$time_local] $remote_addr [$time_local] $request_uri '

'"$http_referer" "$http_user_agent" "$http_x_forwarded_for" '

'$bytes_sent $request_time $sent_http_x_cache_hit';

log_format log404 '$status [$time_local] $remote_addr $host$request_uri $sent_http_location';

$remote_addr与$http_x_forwarded_for用以记录客户端的ip地址;

$remote_user:用来记录客户端用户名称;

$time_local: 用来记录访问时间与时区;

$request: 用来记录请求的url与http协议;

$status: 用来记录请求状态;成功是200,

$body_bytes_s ent :记录发送给客户端文件主体内容大小;

$http_referer:用来记录从那个页面链接访问过来的;

$http_user_agent:记录客户毒啊浏览器的相关信息;

通常web服务器放在反向代理的后面,这样就不能获取到客户的IP地址了,通过$remote_add拿到的IP地址是反向代理服务器的iP地址。反向代理服务器在转发请求的http头信息中,可以增加x_forwarded_for信息,用以记录原有客户端的IP地址和原来客户端的请求的服务器地址;

access_log /dev/null;

#用了log_format指令设置了日志格式之后,需要用access_log指令指定日志文件的存放路径;

# access_log /usr/local/nginx/logs/access_log main;

server_names_hash_bucket_size 128;

#保存服务器名字的hash表是由指令server_names_hash_max_size 和server_names_hash_bucket_size所控制的。参数hash bucket size总是等于hash表的大小,并且是一路处理器缓存大小的倍数。在减少了在内存中的存取次数后,使在处理器中加速查找hash表键值成为可能。如果hash bucket size等于一路处理器缓存的大小,那么在查找键的时候,最坏的情况下在内存中查找的次数为2。第一次是确定存储单元的地址,第二次是在存储单元中查找键 值。因此,如果Nginx给出需要增大hash
max size 或 hash bucket size的提示,那么首要的是增大前一个参数的大小.

client_header_buffer_size 4k;

客户端请求头部的缓冲区大小,这个可以根据你的系统分页大小来设置,一般一个请求的头部大小不会超过1k,不过由于一般系统分页都要大于1k,所以这里设置为分页大小。分页大小可以用命令getconf PAGESIZE取得。

large_client_header_buffers 8 128k;

客户请求头缓冲大小

nginx默认会用client_header_buffer_size这个buffer来读取header值,如果

header过大,它会使用large_client_header_buffers来读取

如果设置过小HTTP头/Cookie过大 会报400 错误nginx 400 bad request

求行如果超过buffer,就会报HTTP 414错误(URI Too Long)

nginx接受最长的HTTP头部大小必须比其中一个buffer大,否则就会报400的

HTTP错误(Bad Request)。

open_file_cache max 102400

使用字段:http, server, location 这个指令指定缓存是否启用,如果启用,将记录文件以下信息: ·打开的文件描述符,大小信息和修改时间. ·存在的目录信息. ·在搜索文件过程中的错误信息 --没有这个文件,无法正确读取,参考open_file_cache_errors指令选项:

·max -指定缓存的最大数目,如果缓存溢出,最长使用过的文件(LRU)将被移除

例: open_file_cache max=1000 inactive=20s; open_file_cache_valid 30s; open_file_cache_min_uses 2; open_file_cache_errors on;

open_file_cache_errors

语法:open_file_cache_errors on | off 默认值:open_file_cache_errors off 使用字段:http, server, location 这个指令指定是否在搜索一个文件是记录cache错误.

open_file_cache_min_uses

语法:open_file_cache_min_uses number 默认值:open_file_cache_min_uses 1 使用字段:http, server, location 这个指令指定了在open_file_cache指令无效的参数中一定的时间范围内可以使用的最小文件数,如 果使用更大的值,文件描述符在cache中总是打开状态.

open_file_cache_valid

语法:open_file_cache_valid time 默认值:open_file_cache_valid 60 使用字段:http, server, location 这个指令指定了何时需要检查open_file_cache中缓存项目的有效信息.

client_max_body_size 300m;

设定通过nginx上传文件的大小

sendfile on;

#sendfile指令指定 nginx 是否调用sendfile 函数(zero copy 方式)来输出文件,

对于普通应用,必须设为on。

如果用来进行下载等应用磁盘IO重负载应用,可设置为off,以平衡磁盘与网络IO处理速度,降低系统uptime。

tcp_nopush on;

此选项允许或禁止使用socke的TCP_CORK的选项,此选项仅在使用sendfile的时候使用

proxy_connect_timeout 90; 

#后端服务器连接的超时时间_发起握手等候响应超时时间

proxy_read_timeout 180;

#连接成功后_等候后端服务器响应时间_其实已经进入后端的排队之中等候处理(也可以说是后端服务器处理请求的时间)

proxy_send_timeout 180;

#后端服务器数据回传时间_就是在规定时间之内后端服务器必须传完所有的数据

proxy_buffer_size 256k;

#设置从被代理服务器读取的第一部分应答的缓冲区大小,通常情况下这部分应答中包含一个小的应答头,默认情况下这个值的大小为指令proxy_buffers中指定的一个缓冲区的大小,不过可以将其设置为更小

proxy_buffers 4 256k;

#设置用于读取应答(来自被代理服务器)的缓冲区数目和大小,默认情况也为分页大小,根据操作系统的不同可能是4k或者8k

proxy_busy_buffers_size 256k;

proxy_temp_file_write_size 256k;

#设置在写入proxy_temp_path时数据的大小,预防一个工作进程在传递文件时阻塞太长

proxy_temp_path /data0/proxy_temp_dir;

#proxy_temp_path和proxy_cache_path指定的路径必须在同一分区

proxy_cache_path /data0/proxy_cache_dir levels=1:2 keys_zone=cache_one:200m inactive=1d max_size=30g;

#设置内存缓存空间大小为200MB,1天没有被访问的内容自动清除,硬盘缓存空间大小为30GB。

keepalive_timeout 120;

keepalive超时时间。

tcp_nodelay on;

client_body_buffer_size 512k;

如果把它设置为比较大的数值,例如256k,那么,无论使用firefox还是IE浏览器,来提交任意小于256k的图片,都很正常。如果注释该指令,使用默认的client_body_buffer_size设置,也就是操作系统页面大小的两倍,8k或者16k,问题就出现了。

无论使用firefox4.0还是IE8.0,提交一个比较大,200k左右的图片,都返回500 Internal Server Error错误

proxy_intercept_errors on;

表示使nginx阻止HTTP应答代码为400或者更高的应答。

upstream img_relay {

server 127.0.0.1:8027;

server 127.0.0.1:8028;

server 127.0.0.1:8029;

hash $request_uri;

}

nginx的upstream目前支持4种方式的分配

1、轮询(默认)

每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。

2、weight

指定轮询几率,weight和访问比率成正比,用于后端服务器性能不均的情况。

例如:

upstream bakend {

server 192.168.0.14 weight=10;

server 192.168.0.15 weight=10;

}

2、ip_hash

每个请求按访问ip的hash结果分配,这样每个访客固定访问一个后端服务器,可以解决session的问题。

例如:

upstream bakend {

ip_hash;

server 192.168.0.14:88;

server 192.168.0.15:80;

}

3、fair(第三方)

按后端服务器的响应时间来分配请求,响应时间短的优先分配。

upstream backend {

server server1;

server server2;

fair;

}

4、url_hash(第三方)

按访问url的hash结果来分配请求,使每个url定向到同一个后端服务器,后端服务器为缓存时比较有效。

例:在upstream中加入hash语句,server语句中不能写入weight等其他的参数,hash_method是使用的hash算法

upstream backend {

server squid1:3128;

server squid2:3128;

hash $request_uri;

hash_method crc32;

}

tips:

upstream bakend{#定义负载均衡设备的Ip及设备状态

ip_hash;

server 127.0.0.1:9090 down;

server 127.0.0.1:8080 weight=2;

server 127.0.0.1:6060;

server 127.0.0.1:7070 backup;

}

在需要使用负载均衡的server中增加

proxy_pass http://bakend/;

每个设备的状态设置为:

1.down表示单前的server暂时不参与负载

2.weight默认为1.weight越大,负载的权重就越大。

3.max_fails:允许请求失败的次数默认为1.当超过最大次数时,返回proxy_next_upstream模块定义的错误

4.fail_timeout:max_fails次失败后,暂停的时间。

5.backup: 其它所有的非backup机器down或者忙的时候,请求backup机器。所以这台机器压力会最轻。

nginx支持同时设置多组的负载均衡,用来给不用的server来使用。

client_body_in_file_only设置为On 可以讲client post过来的数据记录到文件中用来做debug

client_body_temp_path设置记录文件的目录 可以设置最多3层目录

location对URL进行匹配.可以进行重定向或者进行新的代理 负载均衡

server

#配置虚拟机

{

listen 80;

#配置监听端口

server_name image.***.com;

#配置访问域名

location ~* \.(mp3|exe)$ {

#对以“mp3或exe”结尾的地址进行负载均衡

proxy_pass http://img_relay$request_uri;

#设置被代理服务器的端口或套接字,以及URL

proxy_set_header Host $host;

proxy_set_header X-Real-IP $remote_addr;

proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

#以上三行,目的是将代理服务器收到的用户的信息传到真实服务器上

}

location /face {

if ($http_user_agent ~* "xnp") {

rewrite ^(.*)$ http://211.151.188.190:8080/face.jpg redirect;

}

proxy_pass http://img_relay$request_uri;

proxy_set_header Host $host;

proxy_set_header X-Real-IP $remote_addr;

proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

error_page 404 502 = @fetch;

}

location @fetch {

access_log /data/logs/face.log log404;

#设定本服务器的访问日志

rewrite ^(.*)$ http://211.151.188.190:8080/face.jpg redirect;

}

location /image {

if ($http_user_agent ~* "xnp") {

rewrite ^(.*)$ http://211.151.188.190:8080/face.jpg redirect;

}

proxy_pass http://img_relay$request_uri;

proxy_set_header Host $host;

proxy_set_header X-Real-IP $remote_addr;

proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

error_page 404 502 = @fetch;

}

location @fetch {

access_log /data/logs/image.log log404;

rewrite ^(.*)$ http://211.151.188.190:8080/face.jpg redirect;

}

}

server

{

listen 80;

server_name *.***.com *.***.cn;

location ~* \.(mp3|exe)$ {

proxy_pass http://img_relay$request_uri;

proxy_set_header Host $host;

proxy_set_header X-Real-IP $remote_addr;

proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

}

location / {

if ($http_user_agent ~* "xnp") {

rewrite ^(.*)$ http://i1.***img.com/help/noimg.gif redirect;

}

proxy_pass http://img_relay$request_uri;

proxy_set_header Host $host;

proxy_set_header X-Real-IP $remote_addr;

proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

#error_page 404 http://i1.***img.com/help/noimg.gif;

error_page 404 502 = @fetch;

}

location @fetch {

access_log /data/logs/baijiaqi.log log404;

rewrite ^(.*)$ http://i1.***img.com/help/noimg.gif redirect;

}

#access_log off;

}

server

{

listen 80;

server_name *.***img.com;

location ~* \.(mp3|exe)$ {

proxy_pass http://img_relay$request_uri;

proxy_set_header Host $host;

proxy_set_header X-Real-IP $remote_addr;

proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

}

location / {

if ($http_user_agent ~* "xnp") {

rewrite ^(.*)$ http://i1.***img.com/help/noimg.gif;

}

proxy_pass http://img_relay$request_uri;

proxy_set_header Host $host;

proxy_set_header X-Real-IP $remote_addr;

proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

#error_page 404 http://i1.***img.com/help/noimg.gif;

error_page 404 = @fetch;

}

#access_log off;

location @fetch {

access_log /data/logs/baijiaqi.log log404;

rewrite ^(.*)$ http://i1.***img.com/help/noimg.gif redirect;

}

}

server

{

listen 8080;

server_name ngx-ha.***img.com;

location / {

stub_status on;

access_log off;

}

}

server {

listen 80;

server_name imgsrc1.***.net;

root html;

}

server {

listen 80;

server_name ***.com w.***.com;

# access_log /usr/local/nginx/logs/access_log main;

location / {

rewrite ^(.*)$ http://www.***.com/ ;

}

}

server {

listen 80;

server_name *******.com w.*******.com;

# access_log /usr/local/nginx/logs/access_log main;

location / {

rewrite ^(.*)$ http://www.*******.com/;

}

}

server {

listen 80;

server_name ******.com;

# access_log /usr/local/nginx/logs/access_log main;

location / {

rewrite ^(.*)$ http://www.******.com/;

}

}

location /NginxStatus {

stub_status on;

access_log on;

auth_basic "NginxStatus";

auth_basic_user_file conf/htpasswd;

}

#设定查看Nginx状态的地址

location ~ /\.ht {

deny all;

}

#禁止访问.htxxx文件

}

注释:变量

Ngx_http_core_module模块支持内置变量,他们的名字和apache的内置变量是一致的。

首先是说明客户请求title中的行,例如$http_user_agent,$http_cookie等等。

此外还有其它的一些变量

$args此变量与请求行中的参数相等

$content_length等于请求行的“Content_Length”的值。

$content_type等同与请求头部的”Content_Type”的值

$document_root等同于当前请求的root指令指定的值

$document_uri与$uri一样

$host与请求头部中“Host”行指定的值或是request到达的server的名字(没有Host行)一样

$limit_rate允许限制的连接速率

$request_method等同于request的method,通常是“GET”或“POST”

$remote_addr客户端ip

$remote_port客户端port

$remote_user等同于用户名,由ngx_http_auth_basic_module认证

$request_filename当前请求的文件的路径名,由root或alias和URI request组合而成

$request_body_file

$request_uri含有参数的完整的初始URI

$query_string与$args一样

$sheeme http模式(http,https)尽在要求是评估例如

Rewrite ^(.+)$ $sheme://example.com$; Redirect;

$server_protocol等同于request的协议,使用“HTTP/或“HTTP/

$server_addr request到达的server的ip,一般获得此变量的值的目的是进行系统调用。为了避免系统调用,有必要在listen指令中指明ip,并使用bind参数。

$server_name请求到达的服务器名

$server_port请求到达的服务器的端口号

$uri等同于当前request中的URI,可不同于初始值,例如内部重定向时或使用index

nginx中文维基百科 http://wiki.nginx.org/NginxChs

http://www.queryer.cn/DOC/nginxCHS/index.html

时间: 2024-09-17 03:00:14

nginx概念理解的相关文章

OpenGL ES 纹理贴图的重复与嵌位概念理解

OpenGL ES 纹理贴图的重复与嵌位概念理解 太阳火神的美丽人生 (http://blog.csdn.net/opengl_es) 本文遵循"署名-非商业用途-保持一致"创作公用协议 转载请保留此句:太阳火神的美丽人生 -  本博客专注于 敏捷开发及移动和物联设备研究:iOS.Android.Html5.Arduino.pcDuino,否则,出自本博客的文章拒绝转载或再转载,谢谢合作. 以下有一篇转载的Android中关于纹理贴图规则的文章,很不多. 不过我这里是想要深入研究如果让

《中国人工智能学会通讯》——2.32 直觉概念理解(Intuitive Concept Understanding)

2.32 直觉概念理解(Intuitive Concept Understanding) 在过去的几年里,深度学习产生了一种更为通用的多模式概念方法:亚符号知识(Subsymbolicknowledge )和推理(reasoning)可以隐式地被系统理解,而不需要明确的编程甚至明确的表示.今年,对于我们人类可以涉及到的概念的亚符号理解的研究已经取得了相当好的进展.这一进展有助于研究古老符号的来源--这些符号或文字的意思如何形成.这种日益流行用来解决这一问题的方式使用了联合嵌入方法(joint e

JavaScript的作用域和块级作用域概念理解

  作用域永远都是任何一门编程语言中的重中之重,因为它控制着变量与参数的可见性与生命周期.讲到这里,首先理解两个概念:块级作用域与函数作用域. 什么是块级作用域呢? 任何一对花括号({和})中的语句集都属于一个块,在这之中定义的所有变量在代码块外都是不可见的,我们称之为块级作用域. 函数作用域就好理解了(*^__^*) ,定义在函数中的参数和变量在函数外部是不可见的. 大多数类C语言都拥有块级作用域,JS却没有.请看下文demo: //C语言 #include void main() { int

AIX LVM基本概念理解及十八个典型问题

 对于AIX系统工程师来说,LVM是无论如何都无法避免的区域,VG镜像.存储迁移.IO调优,存储故障处理各个方面都有LVM的影子.每当我们在这些方面遇到难题时,其实都是直接或间接的和LVM战斗. 以下是一些LVM知识.常见问题及其解决方法和注意事项,掌握这些内容,必将提高你的LVM战斗力! 1. 基本概念 LVM内置在AIX系统中,随着AIX版本的更新而更新.不管是功能性还是扩展性都在逐步发展.我们在日常的工作中,一定结合自己的实际情况做好规划再使用,避免由于LVM本身的限制带来后期维护和扩展的

VMware vSphere 关键概念理解与速查手册

原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.http://dgd2010.blog.51cto.com/1539422/1414113 此篇文章结合vCenter帮助手册和vSphere中文文档对VMware虚拟化中涉及的一些关键字或专有名词进行了部分整理,刚接触VMware虚拟化不久的朋友可以从中得到一些借鉴和提示.PS:本文概念基于VMware vSphere 5.5,同样适用于先前的vSphere发行版本. 参考: VMware

js作用域及作用域链概念理解及使用_基础知识

(1)作用域 一个变量的作用域(scope)是程序源代码中定义的这个变量的区域. 1. 在JS中使用的是词法作用域(lexical scope) 不在任何函数内声明的变量(函数内省略var的也算全局)称作全局变量(global scope) 在函数内声明的变量具有函数作用域(function scope),属于局部变量 局部变量优先级高于全局变量 var name="one"; function test(){ var name="two"; console.log

数组基本概念理解

变量类型 变量名: 元素类型 数组名[元素个数]; // 数组中保存的每一个数据,称之为元素 特点:数组只能存放同一种数据类型 数组中的每一个元素都有一个索引号,索引号从0开始部分初始化, 没有赋值的元素默认是0 数组[]中的元素个数只能写整型常量,以及返回值是整型常量的表达式.通过变量定义数组,如果没有对数组进行初始化,里面存放的是一些垃圾数据(随机值)在定义数组的同时进行初始化,可以省略元素个数,会自动的计算出数组元素的个数.要想给数组一次性赋值(给数组中所有的元素赋值)只能在定义数组的同时

[机器学习]机器学习笔记整理12-线性回归概念理解

前提介绍: 为什么需要统计量? 统计量:描述数据特征 1. 集中趋势衡量 均值(平均数,平均值)(mean) 这里写图片描述 {6, 2, 9, 1, 2} (6 + 2 + 9 + 1 + 2) / 5 = 20 / 5 = 4 中位数 (median): 将数据中的各个数值按照大小顺序排列,居于中间位置的变量 给数据排序:1, 2, 2, 6, 9 找出位置处于中间的变量:2 当n为基数的时候:直接取位置处于中间的变量 当n为偶数的时候,取中间两个量的平均值 众数 (mode): 数据中出现

概念理解

问题描述 http是应用层协议,其底层是tcp实现的.而http的内置对象是基于http的,所以页面之间通过http内置对象传递数据是通过tcp协议来实现的.想问下大神,我的这句话有没有问题? 解决方案 解决方案二:如果是get提交,那必须得修改server.xml.或者,你可以:将前台提交的乱码做个hashmap:key是对应的乱码字符串:或bytearray:value是浏览器那边发送的正确汉字.解决方案三:不好意思错位了解决方案四:浏览器在使用http协议与web服务器通讯是使用的tcp传