【题目】
Merge k sorted
linked lists and return it as one sorted list. Analyze and describe its complexity.
【分析】
无
【代码】
/********************************* * 日期:2015-01-06 * 作者:SJF0115 * 题目: 23.Merge k Sorted Lists * 来源:https://oj.leetcode.com/problems/merge-k-sorted-lists/ * 结果:Time Limit Exceeded * 来源:LeetCode * 博客: **********************************/ #include <iostream> #include <vector> using namespace std; struct ListNode{ int val; ListNode *next; ListNode(int x):val(x),next(NULL){} }; class Solution { public: ListNode *mergeKLists(vector<ListNode *> &lists) { ListNode *head = NULL; if(lists.size() == 0){ return head; }//if for(int i = 0;i < lists.size();i++){ head = mergeTwoLists(head,lists[i]); }//for return head; } private: ListNode *mergeTwoLists(ListNode *l1, ListNode *l2) { if(l1 == NULL) return l2; if(l2 == NULL) return l1; if(l1->val < l2->val) { l1->next = mergeTwoLists(l1->next, l2); return l1; } else { l2->next = mergeTwoLists(l2->next, l1); return l2; } } }; // 创建链表 ListNode* CreateList(int A[],int n){ ListNode *head = NULL; if(n <= 0){ return head; }//if head = new ListNode(A[0]); ListNode *p1 = head; for(int i = 1;i < n;i++){ ListNode *node = new ListNode(A[i]); p1->next = node; p1 = node; }//for return head; } int main() { Solution solution; vector<ListNode*> vecs; int A[] = {1,2,4,7,9}; int B[] = {3,5,8,10,11,12}; int C[] = {6,10,13}; int D[] = {15,16,17,23}; ListNode* head1 = CreateList(A,5); ListNode* head2 = CreateList(B,6); ListNode* head3 = CreateList(C,3); ListNode* head4 = CreateList(D,4); vecs.push_back(head1); vecs.push_back(head2); vecs.push_back(head3); vecs.push_back(head4); ListNode *head = solution.mergeKLists(vecs); // 输出 ListNode *p = head; while(p){ cout<<p->val<<" "; p = p->next; }//while cout<<endl; }
这种方法超时。。。。。。。
【分析二】
采用最小优先级队列。
第一步:把非空的链表装进最小优先级队列中。
第二步:遍历最小优先级队列,直到最小优先级队列空为止。每次遍历,都能从最小优先级队列中取出具有当前最小的元素的链表。
如果除最小元素之外,链表不空,重新装进最小优先级队列中。
【代码二】
/********************************* * 日期:2015-01-06 * 作者:SJF0115 * 题目: 23.Merge k Sorted Lists * 来源:https://oj.leetcode.com/problems/merge-k-sorted-lists/ * 结果:AC * 来源:LeetCode * 博客: **********************************/ #include <iostream> #include <queue> using namespace std; struct ListNode{ int val; ListNode *next; ListNode(int x):val(x),next(NULL){} }; class Solution { public: ListNode *mergeKLists(vector<ListNode *> &lists) { ListNode *head = new ListNode(-1); ListNode *p = head; // 最小优先级队列 priority_queue<ListNode*,vector<ListNode*>,cmp> Heap; // 链表加入优先级队列 for(int i = 0;i < lists.size();i++){ if(lists[i] != NULL){ Heap.push(lists[i]); }//if }//for // merge while(!Heap.empty()){ // 最小的 ListNode *list = Heap.top(); Heap.pop(); p->next = list; p = list; if(list->next != NULL){ Heap.push(list->next); }//if }//while return head->next; } private: // 用于最小优先级队列 struct cmp { bool operator()(ListNode* node1, ListNode* node2) { return node1->val > node2->val; }//bool }; }; // 创建链表 ListNode* CreateList(int A[],int n){ ListNode *head = NULL; if(n <= 0){ return head; }//if head = new ListNode(A[0]); ListNode *p1 = head; for(int i = 1;i < n;i++){ ListNode *node = new ListNode(A[i]); p1->next = node; p1 = node; }//for return head; } int main() { Solution solution; vector<ListNode*> vecs; int A[] = {1,2,4,7,9}; int B[] = {3,5,8,10,11,12}; int C[] = {6,10,13}; int D[] = {15,16,17,23}; ListNode* head1 = CreateList(A,5); ListNode* head2 = CreateList(B,6); ListNode* head3 = CreateList(C,3); ListNode* head4 = CreateList(D,4); vecs.push_back(head1); vecs.push_back(head2); vecs.push_back(head3); vecs.push_back(head4); ListNode *head = solution.mergeKLists(vecs); // 输出 ListNode *p = head; while(p){ cout<<p->val<<" "; p = p->next; }//while cout<<endl; }
【分析三】
I think my code's complexity is also O(nlogk) and not using heap or priority queue, n means the total elements and k means the size of list.
The mergeTwoLists functiony in my code comes from the problem Merge Two Sorted Listswhose complexity obviously
is O(n), n is the sum of length of l1 and l2.
To put it simpler, assume the k is 2^x, So the progress of combination is like a full binary tree, from bottom to top. So on every level of tree, the combination complexity is n, beacause every level have all n numbers without repetition. The level of tree
is x, ie logk. So the complexity isO(nlogk).
for example, 8 ListNode, and the length of every ListNode is x1, x2, x3, x4, x5, x6, x7, x8, total is n.
on level 3: x1+x2, x3+x4, x5+x6, x7+x8 sum: n
on level 2: x1+x2+x3+x4, x5+x6+x7+x8 sum: n
on level 1: x1+x2+x3+x4+x5+x6+x7+x8 sum: n
total 3n, nlog8
【代码三】
/********************************* * 日期:2015-01-07 * 作者:SJF0115 * 题目: 23.Merge k Sorted Lists * 来源:https://oj.leetcode.com/problems/merge-k-sorted-lists/ * 结果:AC * 来源:LeetCode * 博客: **********************************/ #include <iostream> #include <limits.h> #include <queue> using namespace std; struct ListNode{ int val; ListNode *next; ListNode(int x):val(x),next(NULL){} }; class Solution { public: ListNode *mergeKLists(vector<ListNode *> &lists) { int count = lists.size(); if(count == 0){ return NULL; }//if if(count == 1){ return lists[0]; }//if // 链表集合分成两份 vector<ListNode *> leftLists; for(int i = 0;i < count/2;i++){ leftLists.push_back(lists.back()); lists.pop_back(); }//for // 分治 return mergeTwoLists(mergeKLists(leftLists),mergeKLists(lists)); } private: ListNode *mergeTwoLists(ListNode *l1, ListNode *l2) { ListNode *head = new ListNode(-1); for(ListNode *p = head;l1 != NULL || l2 != NULL;p = p->next){ int val1 = (l1 == NULL) ? INT_MAX : l1->val; int val2 = (l2 == NULL) ? INT_MAX : l2->val; if(val1 <= val2){ p->next = l1; l1 = l1->next; }//if else{ p->next = l2; l2 = l2->next; }//else }//for return head->next; } }; // 创建链表 ListNode* CreateList(int A[],int n){ ListNode *head = NULL; if(n <= 0){ return head; }//if head = new ListNode(A[0]); ListNode *p1 = head; for(int i = 1;i < n;i++){ ListNode *node = new ListNode(A[i]); p1->next = node; p1 = node; }//for return head; } int main() { Solution solution; vector<ListNode*> vecs; int A[] = {1,2,4,7,9}; int B[] = {3,5,8,10,11,12}; int C[] = {6,10,13}; int D[] = {15,16,17,23}; ListNode* head1 = CreateList(A,5); ListNode* head2 = CreateList(B,6); ListNode* head3 = CreateList(C,3); ListNode* head4 = CreateList(D,4); vecs.push_back(head1); vecs.push_back(head2); vecs.push_back(head3); vecs.push_back(head4); ListNode *head = solution.mergeKLists(vecs); // 输出 ListNode *p = head; while(p){ cout<<p->val<<" "; p = p->next; }//while cout<<endl; }