如何将大数据变成企业的洞察力和行动力?

大数据部门该放在运营团队还是技术团队?在红杉资本中国基金会专家合伙人、原阿里数据委员会会长车品觉看来,纠结于此类问题的企业,距离大数据的法门尚远。车品觉认为,大数据应该是CEO直接领导的战略级部门,是一把开启新世界大门的钥匙。今天,大数据已在营销、风险控制等领域已大放异彩;而在可预见的未来, 基于大数据的诸多模式创新,将带给我们无限的想象空间。

三大颠覆性变化正在发生,将爆发惊人威力

最近,我去了一趟美国,看到大数据的几个变化,这些变化有可能极大地改变世界。

第一个变化是开始从被动搜集数据,转变为主动搜集数据。 美国一家公司现场给我们表演,电视里正在播放新闻,他们把手机放在电视机旁,手机很快识别出这是CNN新闻频道,以及正在播出什么内容。我们三个人拿出自己的手机,手机同时放三首不同的歌,他们的软件很快辨别出这三首歌是什么,以及作为背景正在播放的电视新闻。这意味着,非结构性的数据编程结构性数据,开始从被动搜集数据转变为主动搜集数据。

第二个变化是非实时转实时。 滴滴打车的数据可以说明不同地点的人流情况,但是零售业得到了这些数据,又如何触到它的用户群呢?大家知道这个世界有一个,DSP(Demand-Side Platform 需求方平台),作为中间方,DMP记录用户去了哪个网站,用了什么APP。当人使用APP时,数据会告诉DSP,这个人出现在了某一个地方,DSP就能够帮商户做智能投放。由于背后有大数据支撑,放在很短的时间内就能完成。这种模式对营销来说,绝对是一个颠覆。

另外,还有一个非常重要的变化是对话。 美国有两大公司,几乎同时宣布了一项战略性科技——对话的人工智能。比如,你的房间有一个音响,这个音响同时是一个传感器。当你说“我要买一瓶酱油”,音响会和你说:“老板,你是不是要买你之前买过的酱油?”你说:“不是,我要买新的。”它就会告诉你,新的酱油以及同样差不多的有几种,建议你选择哪种。这个变化将引发一个大的颠覆。

隐私+归属权:从混沌走向清晰

说到大数据,不得不提的是大数据与隐私这个问题。

这次在美国,见到一个在隐私问题上给美国总统提意见的专家。他说,关于个人隐私会有一个颠覆性的变化,这一变化在欧洲已经开始了,现在是美国。过去,当用户使用一个应用时,都会和应用方签订一个协议,表明用户同意把自己的数据交给应用方以改善用户体验。但是,大部分人都不知道自己同意的是什么,仅仅是点击了“同意”。美国的法律对此准备进行修改,这可能会改变大数据产业。

在这个变化中有个问题,数据分可识别数据、不可识别数据。互联网上的数据,有的可以识别是你,有的不可以识别是你。当不能完全知道他是谁,没有办法和他说你是否同意时该怎么办?现在,美国正在认真讨论类似的事情。

另一个问题是数据的拥有权是谁? 早期大家是按照实物的思路,来定义数据拥有权的法律,后来发现这条路撞墙了。数据的可爱之处就是看见就看见了,不在于是你拿着还是我拿着。法律界已经开始关注这个问题。

关于隐私问题,大部分用户更多是希望平衡好,你不能拿到我的数据我一点好处都没有,你拿了数据使用我却一点都不知道。所以,问题是谁有权控制?比如脸书,每一次使用用户数据,会告诉用户,这个数据会在某个点使用,这就涉及数据使用透明和是否可控的权利问题。这个行业里面很多人不想讲这个问题,但并不是不知道。但这是我们做大数据的人必须要慢慢解决的,否则这是一个定时炸弹。

当然,有大量的数据不相关隐私。比如,用1000个人或者5000个人的数据算出来的结果,当做大数据营销的时候,有没有把他捆绑在5000个人当中营销?美国有些法案很可爱,认定个人数据的隐私问题不是放在单独的案例当中,而是放在行业里面。我问专家,为什么要放在行业里面?他说,个人隐私和行业有关,比如卖药的,个人隐私的监管就会非常严格,而游戏类的个人数据会相对简单一些。在欧洲则是一套法律,不分行业。欧洲人认为,隐私是一个人的底线。而美国认为价值和隐私之间可平衡。这些都是未来大家都会议论的课题。

做好缝合,不断迭代

大数据的本身是异构异类的数据,就像裁缝把不同的材料缝成一件衣服一样,需要很多技术把数据连接起来,让这些数据可以使用。不同材料缝合在一起,中间会有一些缝合处。

美国任何一个做大数据的人,都会告诉你数据关联很难。美国可以把数据关联起来的公司有几家。美国大数据行业在产业链上,是可以分工的。你干这个,我干那个,大家协同把东西做出来。这和中国的情况是有区别的。

要把大数据整合起来,数据源好不好非常重要。另外有没有不同的环境可以进行数据测试,也很重要。

数据是迭代的,算法是迭代的,产品服务也是迭代的。数据有不同的版本、算法有不同的版本,我们要找到最优、同一个语境下最好的算法,达到最好的服务。

将大数据变成企业的洞察力和行动力

对于企业来说,需要将大数据变成企业的洞察力、行动力。10年前,商业决策都是靠经验驱动,用数据证明自己的判断是对的。而数据驱动,则要拥有足够的数据,通过数据发现一些以前没有看到的东西。

比如,有一些人在购物网站搜索过的关键词,两个月后会成为比较流行的关键词。当我们深入分析时,数据会告诉我们,购物里面是有达人的,购物达人看的东西和普通人不一样,他们有自己的方法寻找自己想要的商品。如果能跟踪这些达人,就可以找到用一般推荐引擎无法找到的东西。

一个学习的完整体系,简单来讲,首先有目标定义,之后进行决策、行动、拿到行动结果之后学习。人类学习的一般方法,都是根据这个链路进行,这叫“自学习”:用自己的经验慢慢积累,进行一个自我循环。

当我们开始做大数据的时候,你会发现,别人的数据会成为你的经验。你也可以把别人的数据代入自己的决策,学习到别人的经验,这叫“ 集体智慧 ”。在大数据当中,我们可以找到别人的集体智慧。

大数据里的创新,可以有三个层面:数据的创新、算法的创新、服务的创新。

下面这张图中有四个坐标:数据集中、数据分散、问题清楚、问题不清楚。过去我们可以解决的是数据集中、问题很清楚的部分,后来开始出现很多碎片化、分散的数据,我们发现可以用零散的、没有集合、没有结构化的数据,更好地解决原来的问题。

举一个例子,有一个网站虽然有几亿用户群,但只有几百万人买彩票。如何找到更多用户到这个网站上买彩票呢?按以往的方法,先描述买彩票的人是什么样的,经验认为男的比较喜欢买彩票,年纪应该是25-35岁。而用大数据的方法,则是想猜用户下一步想做什么,可以看4周之内用户有没有看过彩票的内容,如果有,那他就是一个希望要买彩票的人,只是没有在网站里买。用这个思路,我们发现买彩票的女性比男性多,而且往往是在办公室里买的多。这样一来,数据就指明了哪些人在哪些地点是最好去做营销的。

对于数据零散且问题不是很清楚,大数据同样可以解决。比如在面对不知道客户是什么样的人,只知道这些人是重复购买的人,而想要用大众标签去描述这些人时,可以先猜1000个人,对他们进行营销,发现有些人被猜对,有些人被猜错。对猜对的那部分人继续深入,慢慢就会越做越准确。这就是我通常讲的“用数据养数据”。

一个公司有没有大数据能力,一般看他有没有预测能力和行动能力。 但是布点/收集、存储/刷新、识辨/关联,也很重要。前者是如何让数据更容易使用,后者是如何让数据更有效关联在一起。这个闭环如果可以做好,就可以做一个非常好的数据产品。

考量“好数据”的六把标尺

好的数据,六个衡量标准是缺一不可。缺少其中任何一个,数据质量就会下降。有的数据很稀缺,很独家,那就是数据价值。 数据质量,主要要看准不准,但还要看全不全。 如果你只拿到安卓的数据,没有拿到苹果的数据,那就不全。 一段段很零散的数据买过来,没有连续性的数据也是不行的。需要找很可靠的伙伴来提供算法、数据、服务。

一家公司是否能用好自己的数据,首先要看一个公司高管、员工有没有意愿,接着看工具。有意愿、有能力、有工具的前提下,才谈到整个公司一定要对数据有自己的方向,有组织保障,以及执行到位。

信息数据化的情况还没有结束,包括应用无线化。对话性的产品,将是颠覆世界的产品。互动的产品,将来或许会越来越多,这也是我们在创新产品时非常大的机会。

本文作者:佚名

来源:51CTO

时间: 2024-10-10 11:18:40

如何将大数据变成企业的洞察力和行动力?的相关文章

大数据时代企业投融资创新发展

大数据时代企业投融资创新发展的问题,涉及许多前沿科学技术问题. 上世纪90年代初,我在中央党校读博期间,研究决策科学,和它包含的认识论.如何依据有效信息,科学作出决策.当时主要接受了美国西蒙教授的理论,他是一位诺贝尔经济学奖得主,提出了"有限理性"理论,认为人的理性是有限的,只能从有限的信息量中,寻找相对好的决策.比如,要买一枝鲜花,并不需要跑遍所有的花店;要找一个合适的爱人,并不需要与全世界的女人谈一遍恋爱.差不多就行了. 我同意这种观点,但说差不多就行了,未免有点过于悲观和消极,而

大数据时代企业所需的三大技术

作为IT领域的关键词,"大数据"不断被大书特书,对其分析利用也备受关注.另一方面,靠IT技术.现有的组织和人才技能解决不了的难题也渐渐浮出水面.这就需要"分析数据及其与业务相结合的技术". 本文总结了将数据分析应用到业务中所需的技术,以及怎样在企业中实现有效的信息应用.同时,还列举了日本国内外的先进事例. 三大技术 下面,我们来看一下大数据时代企业所需的技术有哪些? 业务技能 这里的业务技能不是指提高业绩的能力,而是指将业务过程标准化.掌握各个过程中哪些信息需要输入

大数据要求企业在两个层面上拥抱创新

全球技术研究和咨询公司Gartner指出,CIO必须意识到创新需要超越用于管理大数据的技术.为了获得最大的价值,企业需要以用大数据分析商业问题的方式寻求并拥抱创新. Gartner研究副总裁Hung LeHong表示:"大数据要求企业在两个层面上拥抱创新.首先,该技术本身具有创新性.其次,企业在进行决策支持和分析时必须勇于创新.第二个原因不是一个技术挑战,而是一个流程和改变管理的挑战.大数据技术带来了分析现有业务问题和机会的创新方法.新数据来源和新的分析能以企业从未使用过的方式来提升企业.&qu

云计算与大数据激发企业潜能

云计算的出现不仅是一场技术的变革,更是一场商业模式的变革.云计算的价值不断在落地应用中崭露头角,而大数据的潜能也正在被逐渐的激发. 2013年将有80%以上的企业采用云计算的方式构建信息系统,作为一种信息资产类型,云计算大数据已经对个人,企业,乃至社会管理服务带来了深刻机遇和影响,也带来从未有过的洞察力和价值.由赛迪网协办的云计算与大数据峰会为企业与专家以及政府搭建良好的沟通平台. 对于企业来说,他们的目标无外乎有两大类,提高收入和降低成本.云计算本质是提高IT基 础设施的效率,起事半功倍的效果

时培昕:工业物联网和工业大数据助力企业实现智能制造|V课堂第83期

2017年架构师最重要的48个小时 | 8折倒计时 工业物联网作为制造业智能化的核心部分被称之为智能制造的神经系统.而工业大数据又是智能化的来源,未来制造企业的运营过程,或者说产品的全生命周期都将由大数据串联起来.那么大数据和工业物联网是如何共同助力企业实现智能智造呢? 第83期[智造+V课堂]分享嘉宾:北京寄云鼎城创始人兼CEO时培昕博士,作为互联网专家,时博士就"工业大数据和工业物联网如何助力企业实现智能制造"的主题带来精彩分享! 分享嘉宾 北京寄云鼎城创始人兼CEO   时培昕

大数据离企业用户到底有多远?

未来是大数据的时代,大数据因此成为一项国家的长远发展战略.近两年的政策利好,使大数据市场再度迎来了新一轮的发展高潮.像"44ZB(泽字节)"这样的惊天数字(业界流传的截至2020年全球大数据规模)因此反复出现在各种大数据会场的电子屏上. 一股焦灼的情绪随之在全产业漫延,还没弄明白怎么搭上"互联网+"的快车呢,大数据又成了另一个新的困扰,一位行业用户曾感叹,"出去不说两句大数据都感觉自己落伍了."而不少医院行业用户直接的反应就是,"小数据

大数据初创企业Concurrent获千万美元融资

大数据初创企业Concurrent刚刚获得了 1000 万美元的新一轮融资. 大数据方兴未艾,Hadoop 则是大数据最流行的基础平台.围绕着 Hadoop 进行创新的初创企业有很多.如 Trifacta 做的是 Hadoop 的数据清理,Platfora 做的是基于 Hadoop 数据的商业智能, Splice Machine 瞄准实时负载处理,而 Hadoop 的分销商 Cloudera 和 Hortonworks 则致力于该数据库的进一步普及. 而 Concurrent 则是企业大数据应用

赛迪顾问:大数据时代企业须打好信息资源整合攻坚战

ZDNET至顶网CIO与应用频道 06月23日 北京消息:数据被认为是新时期的基础生活资料与市场要素,重要程度不亚于物质资产和人力资本.近年来,企业产生的数据量呈指数级增长,信息资源爆炸式激增,其中非结构化的数据信息达到85%左右,传统的信息资源管理技术已经无法应对大数据时代的挑战.Hadoop等大数据技术和其他大数据工具和设备的出现以及云计算数据处理与应用模式的广泛运用,为企业处理日益增长的海量非结构化数据提供了高效.可扩展的低成本解决方案,弥补了传统关系型数据库或数据仓库处理非结构化数据方面

Forrester:大数据是企业必须重视的四大市场之一

在近日召开的第三届大数据世界论坛上,Forrrester曹宇钦表示在目前以客户为中心的时代,必须重视四大市场要点,即客户体验.移动.大数据和数字颠覆,其中数据分析更是CIO们优先考虑的技术措施. 曹宇钦展示了2012年的一项基于中国241个IT公司的技术决策者的跟踪调查报告,在被问到在未来12个月内,会优先考虑哪些技术措施时,使用改进的数据分析,以提高业务决策当选为第三名,在高优先级的投票中,投票比率获得37%. 可见数据分析以绝对的优势,在CIO们的议程中纳入了重中之重.通过Forrester