从JDK源码角度看Short

概况

Java的Short类主要的作用就是对基本类型short进行封装,提供了一些处理short类型的方法,比如short到String类型的转换方法或String类型到short类型的转换方法,当然也包含与其他类型之间的转换方法。

继承结构

--java.lang.Object
  --java.lang.Number
    --java.lang.Short

主要属性

public static final short   MIN_VALUE = -32768;

public static final short   MAX_VALUE = 32767;

public static final Class<Short>    TYPE = (Class<Short>) Class.getPrimitiveClass("short");

public static final int SIZE = 16;

public static final int BYTES = SIZE / Byte.SIZE;
  • MIN_VALUE静态变量表示short能去的最小值,为-32768(-2的15此方),被final修饰说明不可变。
  • 类似的还有MAX_VALUE,表示short最大值为32767(2的15次方减1)。
  • SIZE用来表示二进制补码形式的short值的比特数,值为16,静态变量且不可变。
  • BYTES用来表示二进制补码形式的short值的字节数,值为SIZE除于Byte.SIZE,结果为2。
  • TYPE的toString的值是short
    Class的getPrimitiveClass是一个native方法,在Class.c中有个Java_java_lang_Class_getPrimitiveClass方法与之对应,所以JVM层面会通过JVM_FindPrimitiveClass函数会根据”short”字符串获得jclass,最终到Java层则为Class<Short>
JNIEXPORT jclass JNICALL
Java_java_lang_Class_getPrimitiveClass(JNIEnv *env,
                                       jclass cls,
                                       jstring name)
{
    const char *utfName;
    jclass result;

    if (name == NULL) {
        JNU_ThrowNullPointerException(env, 0);
        return NULL;
    }

    utfName = (*env)->GetStringUTFChars(env, name, 0);
    if (utfName == 0)
        return NULL;

    result = JVM_FindPrimitiveClass(env, utfName);

    (*env)->ReleaseStringUTFChars(env, name, utfName);

    return result;
}

TYPE执行toString时,逻辑如下,则其实是getName函数决定其值,getName通过native方法getName0从JVM层获取名称,

public String toString() {
        return (isInterface() ? "interface " : (isPrimitive() ? "" : "class "))
            + getName();
    }

getName0根据一个数组获得对应的名称,JVM根据Java层的Class可得到对应类型的数组下标,比如这里下标为9,则名称为”short”。

const char* type2name_tab[T_CONFLICT+1] = {
  NULL, NULL, NULL, NULL,
  "boolean",
  "char",
  "float",
  "double",
  "byte",
  "short",
  "int",
  "long",
  "object",
  "array",
  "void",
  "*address*",
  "*narrowoop*",
  "*conflict*"
};

主要方法

parseShort方法

 public static short parseShort(String s, int radix)
        throws NumberFormatException {
        int i = Integer.parseInt(s, radix);
        if (i < MIN_VALUE || i > MAX_VALUE)
            throw new NumberFormatException(
                "Value out of range. Value:\"" + s + "\" Radix:" + radix);
        return (short)i;
}
public static short parseShort(String s) throws NumberFormatException {
        return parseShort(s, 10);
}

两个parseShort方法,主要看第一个即可,第一个参数是待转换的字符串,第二个参数表示进制数,这里的转换其实是调了Integer的parseInt方法,返回值再判断是不是在short的最小值和最大值之间。怎么更好理解这个参数呢?举个例子,Short.parseShort("100",10)表示十进制的100,所以值为100,而Short.parseShort("100",2)表示二进制的100,所以值为4。另外如果Short.parseShort("100000",10)会抛出java.lang.NumberFormatException异常。

构造函数

public Short(String s) throws NumberFormatException {
    this.value = parseShort(s, 10);
}

public Short(short value) {
    this.value = value;
}

包含两种构造函数,分别可以传入short和String类型。它是通过调用parseShort方法进行转换的,所以转换逻辑与上面的parseShort方法一样。

toString方法

public static String toString(short s) {
    return Integer.toString((int)s, 10);
}
public String toString() {
   return Integer.toString((int)value);
}

一个是静态方法一个是非静态方法,但两个方法转换的效果是一样的,都是以十进制形式转换。

ShortCache内部类

private static class ShortCache {
    private ShortCache(){}

    static final Short cache[] = new Short[-(-128) + 127 + 1];

    static {
        for(int i = 0; i < cache.length; i++)
            cache[i] = new Short((short)(i - 128));
    }
}

ShortCache是Short的一个内部类,它包含了short可能值的Short数组,范围是[-128,127],它不会像Byte类将所有可能值缓存起来,因为Short类型范围很大,将它们全部缓存起来代价太高,而Byte类型就是从-128到127,一共才256个。所以这里只实例化256个Short对象,当Short的值范围在[-128,127]时则直接从缓存中获取对应的Short对象,不必重新实例化。当然这些缓存值都是静态且final的,避免重复的实例化和回收。

valueOf方法

public static Short valueOf(short s) {
    final int offset = 128;
    int sAsInt = s;
    if (sAsInt >= -128 && sAsInt <= 127) { // must cache
        return ShortCache.cache[sAsInt + offset];
    }
    return new Short(s);
}

有三个valueOf方法,主要看上面这个,因为ShortCache缓存了[-128,127]值的Short对象,对于在范围内的直接从ShortCache的数组中获取对应的Short对象即可,而在范围外的则需要重新实例化了。

decode方法

public static Short decode(String nm) throws NumberFormatException {
    int i = Integer.decode(nm);
    if (i < MIN_VALUE || i > MAX_VALUE)
        throw new NumberFormatException(
                "Value " + i + " out of range from input " + nm);
    return valueOf((short)i);
}

decode方法主要作用是解码字符串转成Short型,比如Short.decode("11")的结果为11,而Short.decode("0x11")结果为17,因为后面的是十六进制,它会根据实际情况进行解码。

xxxValue方法

包括shortValue、intValue、longValue、byteValue、floatValue和doubleValue等方法,其实就是转换成对应的类型。

hashCode方法

public int hashCode() {
    return Short.hashCode(value);
}
public static int hashCode(short value) {
    return (int)value;
}

hashCode方法很简单,就是直接返回int类型的值。

equals方法

public boolean equals(Object obj) {
    if (obj instanceof Short) {
        return value == ((Short)obj).shortValue();
    }
    return false;
}

比较是否相同时先判断是不是Short类型再比较值。

compare方法

public static int compare(short x, short y) {
    return x - y;
}

通过相减来比较,大于0则说明x大于y。

无符号转换

public static int toUnsignedInt(short x) {
    return ((int) x) & 0xffff;
}

public static long toUnsignedLong(short x) {
    return ((long) x) & 0xffffL;
}

包括转成无符号int型和无符号long型。

以下是广告相关阅读

========广告时间========

鄙人的新书《Tomcat内核设计剖析》已经在京东销售了,有需要的朋友可以到 https://item.jd.com/12185360.html 进行预定。感谢各位朋友。

为什么写《Tomcat内核设计剖析》

=========================

相关阅读:

从JDK源码角度看Object

谈谈Java基础数据类型

从JDK源码角度看并发锁的优化

从JDK源码角度看线程的阻塞和唤醒

从JDK源码角度看并发竞争的超时

从JDK源码角度看java并发线程的中断

从JDK源码角度看Java并发的公平性

从JDK源码角度看java并发的原子性如何保证

从JDK源码角度看Byte

从JDK源码角度看Boolean

欢迎关注:

时间: 2024-10-30 18:57:01

从JDK源码角度看Short的相关文章

从JDK源码角度看Float

关于IEEE 754 在看Float前需要先了解IEEE 754标准,该标准定义了浮点数的格式还有一些特殊值,它规定了计算机中二进制与十进制浮点数转换的格式及方法.规定了四种表示浮点数值的方法,单精确度(32位).双精确度(64位).延伸单精确度(43位以上)与延伸双精确度(79位以上).多数编程语言支持单精确度和双精确度,这里讨论的Float就是Java的单精确度的实现. 浮点数的表示 浮点数由三部分组成,如下图,符号位s.指数e和尾数f. 对于求值我们是有一个公式对应的,根据该公式来看会更简

从JDK源码角度看Long

概况 Java的Long类主要的作用就是对基本类型long进行封装,提供了一些处理long类型的方法,比如long到String类型的转换方法或String类型到long类型的转换方法,当然也包含与其他类型之间的转换方法.除此之外还有一些位相关的操作. 继承结构 --java.lang.Object --java.lang.Number --java.lang.Long 主要属性 public static final long MIN_VALUE = 0x8000000000000000L;

从JDK源码角度看Integer

概况 Java的Integer类主要的作用就是对基本类型int进行封装,提供了一些处理int类型的方法,比如int到String类型的转换方法或String类型到int类型的转换方法,当然也包含与其他类型之间的转换方法.除此之外还有一些位相关的操作. 继承结构 --java.lang.Object --java.lang.Number --java.lang.Integer 主要属性 第一部分 public static final int MIN_VALUE = 0x80000000; pub

从JDK源码角度看Byte

Java的Byte类主要的作用就是对基本类型byte进行封装,提供了一些处理byte类型的方法,比如byte到String类型的转换方法或String类型到byte类型的转换方法,当然也包含与其他类型之间的转换方法. 主要实现代码如下: public final class Byte extends Number implements Comparable<Byte> { public static final byte MIN_VALUE = -128; public static fina

从JDK源码角度看Boolean

Java的Boolean类主要作用就是对基本类型boolean进行封装,提供了一些处理boolean类型的方法,比如String类型和boolean类型的转换. 主要实现源码如下: public final class Boolean implements java.io.Serializable, Comparable<Boolean> { private final boolean value; public static final Boolean TRUE = new Boolean(

从JDK源码角度看java并发的公平性

        JAVA为简化开发者开发提供了很多并发的工具,包括各种同步器,有了JDK我们只要学会简单使用类API即可.但这并不意味着不需要探索其具体的实现机制,本文从JDK源码角度简单讲讲并发时线程竞争的公平性.         所谓公平性指所有线程对临界资源申请访问权限的成功率都一样,不会让某些线程拥有优先权.我们知道CLH Node FIFO等待队列是一个先进先出的队列,那么是否就可以说每条线程获取锁时就是公平的呢?关于公平性这里分拆成三个点分别阐述:         ① 准备入队列的节

从JDK源码角度看线程池原理

        "池"技术对我们来说是非常熟悉的一个概念,它的引入是为了在某些场景下提高系统某些关键节点性能,最典型的例子就是数据库连接池,JDBC是一种服务供应接口(SPI),具体的数据库连接实现类由不同厂商实现,数据库连接的建立和销毁都是很耗时耗资源的操作,为了查询数据库中某条记录,最原始的一个过程是建立连接.发送查询语句.返回查询结果.销毁连接,假如仅仅是一个很简单的查询语句,那么可能建立连接与销毁连接两个步骤就已经占所有资源时间消耗的绝大部分,如此低下的效率显然让人无法接受.针

从JDK源码角度看并发竞争的超时

        JDK中的并发框架提供的另外一个优秀机制是锁获取超时的支持,当大量线程对某一锁竞争时可能导致某些线程在很长一段时间都获取不了锁,在某些场景下可能希望如果线程在一段时间内不能成功获取锁就取消对该锁的等待以提高性能,这时就需要用到超时机制.在JDK1.5之前并没有对此支持,当时的并发控制职能通过JVM内置的synchronized关键词实现锁,但对一些特殊要求却力不从心,例如超时取消控制.JDK1.5开始引入并发工具完美解决了此问题,JDK对并发线程开始提供超时的支持.       

从JDK源码角度看线程的阻塞和唤醒

        目前在Java语言层面能实现阻塞唤醒的方式一共有三种:suspend与resume组合.wait与notify组合.park与unpark组合.其中suspend与resume因为存在无法解决的竟态问题而被Java废弃,同样,wait与notify也存在竟态条件,wait必须在notify之前执行,假如一个线程先执行notify再执行wait将可能导致一个线程永远阻塞,如此一来,必须要提出另外一种解决方案,就是park与unpark组合,它位于JDK的juc包下,应该也是因为当时