教你用python3根据关键词爬取百度百科的内容_python

前言

关于python版本,我一开始看很多资料说python2比较好,因为很多库还不支持3,但是使用到现在为止觉得还是pythin3比较好用,因为编码什么的问题,觉得2还是没有3方便。而且在网上找到的2中的一些资料稍微改一下也还是可以用。

好了,开始说爬百度百科的事。

这里设定的需求是爬取北京地区n个景点的全部信息,n个景点的名称是在文件中给出的。没有用到api,只是单纯的爬网页信息。 

1、根据关键字获取url

由于只需要爬取信息,而且不涉及交互,可以使用简单的方法而不需要模拟浏览器。

可以直接

<strong>http://baike.baidu.com/search/word?word="guanjianci"</strong>
<strong>for </strong>l <strong>in </strong>view_names:
 <strong>'''http://baike.baidu.com/search/word?word=''' </strong><em># 得到url的方法
</em><em> </em>name=urllib.parse.quote(l)
 name.encode(<strong>'utf-8'</strong>)
 url=<strong>'http://baike.baidu.com/search/word?word='</strong>+name

这里要注意关键词是中午所以要注意编码问题,由于url中不能出现空格,所以需要用quote函数处理一下。

关于quote():

在 Python2.x 中的用法是:urllib.quote(text)  。Python3.x 中是urllib.parse.quote(text)   。按照标准,URL只允许一部分ASCII 字符(数字字母和部分符号),其他的字符(如汉字)是不符合URL标准的。所以URL中使用其他字符就需要进行URL编码。URL中传参数的部分(query String),格式是:name1=value1&name2=value2&name3=value3。假如你的name或者value值中的『&』或者『=』等符号,就当然会有问题。所以URL中的参数字符串也需要把『&=』等符号进行编码。URL编码的方式是把需要编码的字符转化为%xx的形式。通常URL编码是基于UTF-8的(当然这和浏览器平台有关)

例子:

比如『我,unicode 为 0x6211,UTF-8编码为0xE60x880x91,URL编码就是 %E6%88%91。

Python的urllib库中提供了quotequote_plus两种方法。这两种方法的编码范围不同。不过不用深究,这里用quote就够了。 

2、下载url

用urllib库轻松实现,见下面的代码中def download(self,url) 

3、利用Beautifulsoup获取html 

4、数据分析

百科中的内容是并列的段,所以在爬的时候不能自然的按段逻辑存储(因为全都是并列的)。所以必须用正则的方法。

基本的想法就是把整个html文件看做是str,然后用正则的方法截取想要的内容,在重新把这段内容转换成beautifulsoup对象,然后在进一步处理。

可能要花些时间看一下正则。

代码中还有很多细节,忘了再查吧只能,下次绝对应该边做编写文档,或者做完马上写。。。

贴代码!

# coding:utf-8
'''
 function:爬取百度百科所有北京景点,
 author:yi
'''
import urllib.request
from urllib.request import urlopen
from urllib.error import HTTPError
import urllib.parse
from bs4 import BeautifulSoup
import re
import codecs
import json

class BaikeCraw(object):
 def __init__(self):
  self.urls =set()
  self.view_datas= {}

 def craw(self,filename):
  urls = self.getUrls(filename)
  if urls == None:
   print("not found")
  else:
   for urll in urls:
    print(urll)
    try:
     html_count=self.download(urll)
     self.passer(urll, html_count)
    except:
     print("view do not exist")
    '''file=self.view_datas["view_name"]
    self.craw_pic(urll,file,html_count)
     print(file)'''

 def getUrls (self, filename):
  new_urls = set()
  file_object = codecs.open(filename, encoding='utf-16', )
  try:
   all_text = file_object.read()
  except:
   print("文件打开异常!")
   file_object.close()
  file_object.close()
  view_names=all_text.split(" ")
  for l in view_names:
   if '?' in l:
    view_names.remove(l)
  for l in view_names:
   '''http://baike.baidu.com/search/word?word=''' # 得到url的方法
   name=urllib.parse.quote(l)
   name.encode('utf-8')
   url='http://baike.baidu.com/search/word?word='+name
   new_urls.add(url)
  print(new_urls)
  return new_urls

 def manger(self):
  pass

 def passer(self,urll,html_count):
  soup = BeautifulSoup(html_count, 'html.parser', from_encoding='utf_8')
  self._get_new_data(urll, soup)
  return

 def download(self,url):
  if url is None:
   return None
  response = urllib.request.urlopen(url)
  if response.getcode() != 200:
   return None
  return response.read()

 def _get_new_data(self, url, soup): ##得到数据
  if soup.find('div',class_="main-content").find('h1') is not None:
   self.view_datas["view_name"]=soup.find('div',class_="main-content").find('h1').get_text()#景点名
   print(self.view_datas["view_name"])
  else:
   self.view_datas["view_name"] = soup.find("div", class_="feature_poster").find("h1").get_text()
  self.view_datas["view_message"] = soup.find('div', class_="lemma-summary").get_text()#简介
  self.view_datas["basic_message"]=soup.find('div', class_="basic-info cmn-clearfix").get_text() #基本信息
  self.view_datas["basic_message"]=self.view_datas["basic_message"].split("\n")
  get=[]
  for line in self.view_datas["basic_message"]:
   if line != "":
   get.append(line)
  self.view_datas["basic_message"]=get
  i=1
  get2=[]
  tmp="%%"
  for line in self.view_datas["basic_message"]:

   if i % 2 == 1:
    tmp=line
   else:
    a=tmp+":"+line
    get2.append(a)
   i=i+1
  self.view_datas["basic_message"] = get2
  self.view_datas["catalog"] = soup.find('div', class_="lemma-catalog").get_text().split("\n")#目录整体
  get = []
  for line in self.view_datas["catalog"]:
   if line != "":
    get.append(line)
  self.view_datas["catalog"] = get
  #########################百科内容
  view_name=self.view_datas["view_name"]
  html = urllib.request.urlopen(url)
  soup2 = BeautifulSoup(html.read(), 'html.parser').decode('utf-8')
  p = re.compile(r'', re.DOTALL) # 尾
  r = p.search(content_data_node)
  content_data = content_data_node[0:r.span(0)[0]]
  lists = content_data.split('')
  i = 1
  for list in lists:#每一大块
   final_soup = BeautifulSoup(list, "html.parser")
   name_list = None
   try:
    part_name = final_soup.find('h2', class_="title-text").get_text().replace(view_name, '').strip()
    part_data = final_soup.get_text().replace(view_name, '').replace(part_name, '').replace('编辑', '') # 历史沿革
    name_list = final_soup.findAll('h3', class_="title-text")
    all_name_list = {}
    na="part_name"+str(i)
    all_name_list[na] = part_name
    final_name_list = []###########
    for nlist in name_list:
     nlist = nlist.get_text().replace(view_name, '').strip()
     final_name_list.append(nlist)
    fin="final_name_list"+str(i)
    all_name_list[fin] = final_name_list
    print(all_name_list)
    i=i+1
    #正文
    try:
     p = re.compile(r'', re.DOTALL)
     final_soup = final_soup.decode('utf-8')
     r = p.search(final_soup)
     final_part_data = final_soup[r.span(0)[0]:]
     part_lists = final_part_data.split('')
     for part_list in part_lists:
      final_part_soup = BeautifulSoup(part_list, "html.parser")
      content_lists = final_part_soup.findAll("div", class_="para")
      for content_list in content_lists: # 每个最小段
       try:
        pic_word = content_list.find("div",
                class_="lemma-picture text-pic layout-right").get_text() # 去掉文字中的图片描述
        try:
         pic_word2 = content_list.find("div", class_="description").get_text() # 去掉文字中的图片描述
         content_list = content_list.get_text().replace(pic_word, '').replace(pic_word2, '')
        except:
         content_list = content_list.get_text().replace(pic_word, '')

       except:
        try:
         pic_word2 = content_list.find("div", class_="description").get_text() # 去掉文字中的图片描述
         content_list = content_list.get_text().replace(pic_word2, '')
        except:
         content_list = content_list.get_text()
       r_part = re.compile(r'\[\d.\]|\[\d\]')
       part_result, number = re.subn(r_part, "", content_list)
       part_result = "".join(part_result.split())
       #print(part_result)
    except:
     final_part_soup = BeautifulSoup(list, "html.parser")
     content_lists = final_part_soup.findAll("div", class_="para")
     for content_list in content_lists:
      try:
       pic_word = content_list.find("div", class_="lemma-picture text-pic layout-right").get_text() # 去掉文字中的图片描述
       try:
        pic_word2 = content_list.find("div", class_="description").get_text() # 去掉文字中的图片描述
        content_list = content_list.get_text().replace(pic_word, '').replace(pic_word2, '')
       except:
        content_list = content_list.get_text().replace(pic_word, '')

      except:
       try:
        pic_word2 = content_list.find("div", class_="description").get_text() # 去掉文字中的图片描述
        content_list = content_list.get_text().replace(pic_word2, '')
       except:
        content_list = content_list.get_text()
      r_part = re.compile(r'\[\d.\]|\[\d\]')
      part_result, number = re.subn(r_part, "", content_list)
      part_result = "".join(part_result.split())
      #print(part_result)

   except:
    print("error")
  return

 def output(self,filename):
  json_data = json.dumps(self.view_datas, ensure_ascii=False, indent=2)
  fout = codecs.open(filename+'.json', 'a', encoding='utf-16', )
  fout.write( json_data)
  # print(json_data)
  return

 def craw_pic(self,url,filename,html_count):
  soup = BeautifulSoup(html_count, 'html.parser', from_encoding='utf_8')
  node_pic=soup.find('div',class_='banner').find("a", href=re.compile("/photo/poi/....\."))
  if node_pic is None:
   return None
  else:
   part_url_pic=node_pic['href']
   full_url_pic=urllib.parse.urljoin(url,part_url_pic)
   #print(full_url_pic)
  try:
   html_pic = urlopen(full_url_pic)
  except HTTPError as e:
   return None
  soup_pic=BeautifulSoup(html_pic.read())
  pic_node=soup_pic.find('div',class_="album-list")
  print(pic_node)
  return

if __name__ =="__main__" :
 spider=BaikeCraw()
 filename="D:\PyCharm\\view_spider\\view_points_part.txt"
 spider.craw(filename)

总结

用python3根据关键词爬取百度百科的内容到这就基本结束了,希望这篇文章能对大家学习python有所帮助。

以上是小编为您精心准备的的内容,在的博客、问答、公众号、人物、课程等栏目也有的相关内容,欢迎继续使用右上角搜索按钮进行搜索python
, 爬虫
, 关键词
百度百科
python爬取百度百科、python 爬取糗事百科、python爬取动态网页、python爬取图片、python爬虫爬取新闻,以便于您获取更多的相关知识。

时间: 2024-10-28 12:22:33

教你用python3根据关键词爬取百度百科的内容_python的相关文章

[python] lantern访问中文维基百科及selenium爬取维基百科语料

希望文章对你有所帮助,尤其是web爬虫初学者和NLP相关同学.当然你也能,懂的~ 目录: 0 前言 1 lantern访问中文维基百科 2 Selenium调用Chrome自动访问维基百科 3 Selenium爬取维基百科信息 代码及软件下载地址:http://download.csdn.net/detail/eastmount/9422875 0 前言 在对海量知识挖掘和自然语言处理(Natural Language Processing,简称NLP)中会大量涉及到三大百科的语料问题,尤其是中

Python爬虫爬取百度贴吧多线程版

XPath提取内容 //定位根节点 / 往下层寻找 提取文本内容:/text() 提取属性内容 : /@XXXX 常规匹配 #-*-coding:utf8-*- from lxml import etree html = ''' <!DOCTYPE html> <html> <head lang="en">     <meta charset="UTF-8">     <title>测试-常规用法</

[python学习] 简单爬取维基百科程序语言消息盒

        文章主要讲述如何通过Python爬取维基百科的消息盒(Infobox),主要是通过正则表达式和urllib实现:后面的文章可能会讲述通过BeautifulSoup实现爬取网页知识.由于这方面的文章还是较少,希望提供一些思想和方法对大家有所帮助.如果有错误或不足之处,欢迎之处:如果你只想知道该篇文章最终代码,建议直接阅读第5部分及运行截图. 一. 维基百科和Infobox         你可能会疑惑Infobox究竟是个什么东西呢?下面简单介绍.        维基百科作为目前规

Python爬取三国演义的实现方法_python

本文的爬虫教程分为四部:      1.从哪爬 where      2.爬什么 what      3.怎么爬 how      4.爬了之后信息如何保存 save 一.从哪爬 三国演义 二.爬什么 三国演义全文 三.怎么爬 在Chrome页面打开F12,就可以发现文章内容在节点 <div id="con" class="bookyuanjiao"> 只要找到这个节点,然后把内容写入到一个html文件即可. content = soup.find(&q

scrapy 爬取百度知道,多spider子一个项目中,使用一个pielines

爬取过程中 遇见 百度蜘蛛反爬 robot.txt,我们可以在scrapy 的setting.py 配置文件下配置 ROBOTSTXT_OBEY = False 最终代码 # -*- coding: utf-8 -*- from scrapy.spider import Spider from scrapy.contrib.spiders import CrawlSpider, Rule #from scrapy.contrib.linkextractors.sgml import SgmlLi

python制作爬虫爬取京东商品评论教程_python

本篇文章是python爬虫系列的第三篇,介绍如何抓取京东商城商品评论信息,并对这些评论信息进行分析和可视化.下面是要抓取的商品信息,一款女士文胸.这个商品共有红色,黑色和肤色三种颜色, 70B到90D共18个尺寸,以及超过700条的购买评论. 京东商品评论信息是由JS动态加载的,所以直接抓取商品详情页的URL并不能获得商品评论的信息.因此我们需要先找到存放商品评论信息的文件.这里我们使用Chrome浏览器里的开发者工具进行查找. 具体方法是在商品详情页点击鼠标右键,选择检查,在弹出的开发者工具界

Node.js环境下编写爬虫爬取维基百科内容的实例分享_node.js

基本思路思路一(origin:master):从维基百科的某个分类(比如:航空母舰(key))页面开始,找出链接的title属性中包含key(航空母舰)的所有目标,加入到待抓取队列中.这样,抓一个页面的代码及其图片的同时,也获取这个网页上所有与key相关的其它网页的地址,采取一个类广度优先遍历的算法来完成此任务. 思路二(origin:cat):按分类进行抓取.注意到,维基百科上,分类都以Category:开头,由于维基百科有很好的文档结构,很容易从任一个分类,开始,一直把其下的所有分类全都抓取

浅谈Python爬取网页的编码处理_python

背景 中秋的时候一个朋友给我发了一封邮件说他在爬链家的时候发现网页返回的代码都是乱码让我帮他参谋参谋(中秋加班真是敬业= =)其实这个问题我很早就遇到过之前在爬小说的时候稍微看了一下不过没当回事其实这个问题就是对编码的理解不到位导致的. 问题 很普通的一个爬虫代码代码是这样的 # ecoding=utf-8 import re import requests import sys reload(sys) sys.setdefaultencoding('utf8') url = 'http://j

java网络爬虫爬取百度新闻

采用commons-httpclient commons-httpclient是一个遗留版本,现在官方已经不推荐使用了. lucene采用4.3版本 所需jar包 package com.lulei.util; import java.io.BufferedReader; import java.io.ByteArrayInputStream; import java.io.File; import java.io.IOException; import java.io.InputStream;