《Ceph源码分析》——第3章,第2节Simple实现

3.2 Simple实现
Simple在Ceph里实现比较早,目前也比较稳定,是在生产环境中使用的网络通信模块。如其名字所示,实现相对比较简单。下面具体分析一下,Simple如何实现Ceph网络通信框架的各个模块。

3.2.1 SimpleMessager
类SimpleMessager实现了Messager接口。
class SimpleMessenger : public SimplePolicyMessenger {
Accepter accepter; //用于接受客户端的链接请求
DispatchQueue dispatch_queue; //接收到的请求的消息分发队列
bool did_bind; //是否绑定

__u32 global_seq;//生成全局的消息seq
 ceph_spinlock_t global_seq_lock;//用于保护global_seq

` //地址→pipe映射
ceph::unordered_map rank_pipe;
//正在处理的pipes
set accepting_pipes;
//所有的pipes
set pipes;
//准备释放的pipes
list pipe_reap_queue;`

//内部集群的协议版本
` int cluster_protocol;
}`

3.2.2 Accepter
类Accepter用来在Server端监听端口,接收链接,它继承了Thread类,本身是一个线程,来不断地监听Server的端口:
`class Accepter : public Thread {
SimpleMessenger *msgr;
bool done;
int listen_sd; //监听的端口
uint64_t nonce;
……
}
`
3.2.3 DispatchQueue
DispatchQueue类用于把接收到的请求保存在内部,通过其内部的线程,调用SimpleMessenger类注册的Dispatch类的处理函数来处理相应的消息:

class DispatchQueue {
  ......
  mutable Mutex lock;
  Cond cond;

  class QueueItem {
    int type;
    ConnectionRef con;
    MessageRef m;
    ......
  };

  PrioritizedQueue<QueueItem, uint64_t> mqueue;    //接收消息的优先队列

  set<pair<double, Message*> > marrival;
  //接收到的消息集合 pair为(recv_time, message) 

  map<Message *, set<pair<double, Message*> >::iterator> marrival_map;
  //消息→所在集合位置的映射
    ……
};

其内部的mqueue为优先级队列,用来保存消息,marrival保存了接收到的消息。marrival_map保存消息在集合中的位置。
函数DispatchQueue::enqueue用来把接收到的消息添加到消息队列中,函数DispatchQueue::entry为线程的处理函数,用于处理消息。

3.2.4 Pipe
类Pipe实现了PipeConnection的接口,它实现了两个端口之间的类似管道的功能。
对于每一个pipe,内部都有一个Reader和一个Writer线程,分别用来处理这个Pipe有关的消息接收和请求的发送。线程DelayedDelivery用于故障注入测试:

class Pipe : public RefCountedObject {
  class Reader : public Thread {
  ……
  } reader_thread;
  //接收线程,用于接收数据
  class Writer : public Thread {
  ……
  } writer_thread;
  //发送线程,用于发送数据
  SimpleMessenger *msgr;        // msgr的指针
  uint64_t conn_id;             //分配给Pipe自己唯一的id

  char *recv_buf;               //接收缓存区
  int recv_max_prefetch;        //接收缓冲区一次预取的最大值
  int recv_ofs;                 //接收的偏移量
  int recv_len;                 //接收的长度

  int sd;                       // pipe对应的socked fd

  struct iovec msgvec[IOV_MAX]; //发送消息的iovec结构

  int port;                     //链接端口
  int peer_type;                //链接对方的类型
  entity_addr_t peer_addr;      //对方地址
  Messenger::Policy policy;     //策略

  Mutex pipe_lock;
  int state;                    //当前链接的状态
  atomic_t state_closed;        //如果非0,那么状态为STATE_CLOSED

  PipeConnectionRef connection_state;   //PipeConnection的引用

  utime_t backoff;              // backoff的时间

  map<int, list<Message*> > out_q;  //准备发送的消息优先队列
  DispatchQueue *in_q;          //接收消息的DispatchQueue
  list<Message*> sent;          //要发送的消息
  Cond cond;
  bool send_keepalive;
  bool send_keepalive_ack;
  utime_t keepalive_ack_stamp;
  bool halt_delivery;           //如果Pipe队列消毁,停止增加

  __u32 connect_seq, peer_global_seq;
  uint64_t out_seq;             //发送消息的序列号
  uint64_t in_seq, in_seq_acked;    //接收到消息序号和ACK的序号
}

3.2.5 消息的发送
1)当发送一个消息时,首先要通过Messenger类,获取对应的Connection:
conn = messenger->get_connection(dest_server);
具体到SimpleMessenger的实现如下所示:
a)首先比较,如果dest.addr是my_inst.addr,就直接返回local_connection。
b)调用函数_lookup_pipe在已经存在的Pipe中查找。如果找到,就直接返回pipeConnectionRef;否则调用函数connect_rank新创建一个Pipe,并加入到msgr的register_pipe里。
2)当获得一个Connection之后,就可以调用Connection的发送函数来发送消息。
conn->send_message(m);
其最终调用了SimpleMessenger::submit_message函数:
a)如果Pipe不为空,并且状态不是Pipe::STATE_CLOSED状态,调用函数pipe→_send把发送的消息添加到out_q发送队列里,触发发送线程。
b)如果Pipe为空,就调用connect_rank创建Pipe,并把消息添加到out_q发送队列中。
3)发送线程writer把消息发送出去。通过步骤2,要发送的消息已经保存在相应Pipe的out_q队列里,并触发了发送线程。每个Pipe的Writer线程负责发送out_q的消息,其线程入口函数为Pipe::writer,实现功能:
a)调用函数_get_next_outgoing从out_q中获取消息。
b)调用函数write_message(header, footer, blist)把消息的header、footer、数据blist发送出去。

3.2.6 消息的接收
1)每个Pipe对应的线程Reader用于接收消息。入口函数为Pipe::reader,其功能如下:
a)判断当前的state,如果为STATE_ACCEPTING,就调用函数Pipe::accept来接收连接,如果不是STATE_CLOSED,并且不是STATE_CONNECTING状态,就接收消息。
b)先调用函数tcp_read来接收一个tag。
c)根据tag,来接收不同类型的消息如下所示:
`CEPH_MSGR_TAG_KEEPALIVE消息。
CEPH_MSGR_TAG_KEEPALIVE2,在CEPH_MSGR_TAG_KEEPALIVE的基础上,添加了时间。
CEPH_MSGR_TAG_KEEPALIVE2_ACK。
CEPH_MSGR_TAG_ACK。
CEPH_MSGR_TAG_MSG,这里才是接收的消息。
CEPH_MSGR_TAG_CLOSE。`
d)调用函数read_message来接收消息,当本函数返回后,就完成了接收消息。
2)调用函数in_q->fast_preprocess(m)预处理消息。
3)调用函数in_q->can_fast_dispatch(m),如果可以进行fast_dispatch,就in_q->fast_dispatch(m)处理。fast_dispatch并不把消息加入到mqueue里,而是直接调用msgr->ms_fast_dispatch函数,并最终调用注册的fast_dispatcher函数处理。
4)如果不能fast_dispatch,就调用函数in_q->enqueue(m, m->get_priority(), conn_id) 把接收到的消息加入到DispatchQueue的mqueue队列里,由DispatchQueue的分发线程调用ms_dispatch处理。
ms_fast_dispath和ms_dispatch两种处理的区别在于:ms_dispatch是由DispatchQueue的线程处理的,它是一个单线程;ms_fast_dispatch函数是由Pipe的接收线程直接调用处理的,因此性能比前者要好。

3.2.7 错误处理
网络模块复杂的功能是如何处理网络错误。无论是接收还是发送,会出现各种异常错误,包括返回异常错误码,接收数据的magic验证不一致,接收的数据的效验验证不一致,等等。错误的原因主要是由于网络本身的错误(物理链路等),或者字节跳变引起的。
目前错误处理的方法比较简单,处理流程如下:
1)关闭当前socket的连接。
2)重新建立一个socket连接。
3)重新发送没有接受到ACK应对的消息。
函数Pipe::fault用来处理错误:
1)调用shutdown_socket关闭pipe的socket。
2)调用函数requeue_sent把没有收到ACK的消息重新加入发送队列,当发送队列有请求时,发送线程会不断地尝试重新连接。

时间: 2024-10-25 17:01:50

《Ceph源码分析》——第3章,第2节Simple实现的相关文章

《Ceph源码分析》——导读

目 录序言第1章 Ceph整体架构1.1 Ceph的发展历程1.2 Ceph的设计目标1.3 Ceph基本架构图1.4 Ceph客户端接口 1.4.1 RBD 1.4.2 CephFS1.4.3 RadosGW 1.5 RADOS 1.5.1 Monitor 1.5.2 对象存储1.5.3 pool和PG的概念1.5.4 对象寻址过程1.5.5 数据读写过程1.5.6 数据均衡1.5.7 Peering 1.5.8 Recovery和Backfill 1.5.9 纠删码1.5.10 快照和克隆1

《Ceph源码分析》——第3章,第1节Ceph网络通信框架

第3章Ceph网络通信本章介绍Ceph网络通信模块,这是客户端和服务器通信的底层模块,用来在客户端和服务器之间接收和发送请求.其实现功能比较清晰,是一个相对较独立的模块,理解起来比较容易,所以首先介绍它. 3.1 Ceph网络通信框架一个分布式存储系统需要一个稳定的底层网络通信模块,用于各节点之间的互联互通.对于一个网络通信系统,要求如下:高性能.性能评价的两个指标:带宽和延迟.稳定可靠.数据不丢包,在网络中断时,实现重连等异常处理.网络通信模块的实现在源代码src/msg的目录下,其首先定义了

《Ceph源码分析》——第1章,第5节RADOS

1.5 RADOS RADOS是Ceph存储系统的基石,是一个可扩展的.稳定的.自我管理的.自我修复的对象存储系统,是Ceph存储系统的核心.它完成了一个存储系统的核心功能,包括:Monitor模块为整个存储集群提供全局的配置和系统信息:通过CRUSH算法实现对象的寻址过程:完成对象的读写以及其他数据功能:提供了数据均衡功能:通过Peering过程完成一个PG内存达成数据一致性的过程:提供数据自动恢复的功能:提供克隆和快照功能:实现了对象分层存储的功能:实现了数据一致性检查工具Scrub.下面分

《Ceph源码分析》——第2章,第7节本章小结

2.7 本章小结 本章介绍了src/common目录下的一些公共库中比较常见的类的实现.BufferList在数据读写.序列化中使用比较多,它的各种不同成员函数的使用方法需要读者自己进一步了解.对于ShardedThreadPool,本章只介绍了实现的原理,具体实现在不同的场景会有不同,需要读者面对具体的代码自己去分析.

《Ceph源码分析》——第2章,第2节Buffer

2.2 BufferBuffer就是一个命名空间,在这个命名空间下定义了Buffer相关的数据结构, 这些数据结构在Ceph的源代码中广泛使用.下面介绍的buffer::raw类是基础类,其子类完成了Buffer数据空间的分配,buffer::ptr类实现了Buffer内部的一段数据,buffer::list封装了多个数据段. 2.2.1 buffer::raw类buffer::raw是一个原始的数据Buffer,在其基础之上添加了长度.引用计数和额外的crc校验信息,结构如下:`class b

《Ceph源码分析》——第1章,第2节Ceph的设计目标

1.2 Ceph的设计目标Ceph的设计目标是采用商用硬件(Commodity Hardware)来构建大规模的.具有高可用性.高可扩展性.高性能的分布式存储系统.商用硬件一般指标准的x86服务器,相对于专用硬件,性能和可靠性较差,但由于价格相对低廉,可以通过集群优势来发挥高性能,通过软件的设计解决高可用性和可扩展性.标准化的硬件可以极大地方便管理,且集群的灵活性可以应对多种应用场景.系统的高可用性指的是系统某个部件失效后,系统依然可以提供正常服务的能力.一般用设备部件和数据的冗余来提高可用性.

《Ceph源码分析》——第3章,第3节本章小结

3.3 本章小结本章介绍了Ceph的网络通信模块的框架,及目前生产环境中使用的Simple实现.它对每个链接都会有一个发送线程和接收线程用来处理发送和接收.实现的难点还在于网络链接出现错误时的各种错误处理.

《Ceph源码分析》——第2章,第1节Object

第2章Ceph通用模块本章介绍Ceph源代码通用库中的一些比较关键而又比较复杂的数据结构.Object和Buffer相关的数据结构是普遍使用的.线程池ThreadPool可以提高消息处理的并发能力.Finisher提供了异步操作时来执行回调函数.Throttle在系统的各个模块各个环节都可以看到,它用来限制系统的请求,避免瞬时大量突发请求对系统的冲击.SafteTimer提供了定时器,为超时和定时任务等提供了相应的机制.理解这些数据结构,能够更好理解后面章节的相关内容. 2.1 Object对象

《Ceph源码分析》——第1章,第一节Ceph的发展历程

第1章Ceph整体架构本章从比较高的层次对Ceph的发展历史.Ceph的设计目标.整体架构进行简要介绍.其次介绍Ceph的三种对外接口:块存储.对象存储.文件存储.还介绍Ceph的存储基石RADOS系统的一些基本概念.各个模块组成和功能.最后介绍了对象的寻址过程和数据读写的原理,以及RADOS实现的数据服务等. 1.1 Ceph的发展历程Ceph项目起源于其创始人Sage Weil在加州大学Santa Cruz分校攻读博士期间的研究课题.项目的起始时间为2004年,在2006年基于开源协议开源了