@tags: caffe 机器学习
在机器学习(暂时限定有监督学习)中,常见的算法大都可以划分为两个部分来理解它
- 一个是它的Hypothesis function,也就是你用一个函数f,来拟合任意一个输入x,让预测值t(t=f(x))来拟合真实值y
- 另一个是它的cost function,也就是你用一个函数E,来表示样本总体的误差。
而有时候还会出现loss function,感觉会和cost function混淆。
上quora看了下,有个同名问题,回答的人不多,upvote更少。。回答者里面,普遍认为cost function就是loss function,一个意思。
anyway,还是有个答案提到了区别,我更支持这种看法,参考这里:http://image.diku.dk/shark/sphinx_pages/build/html/rest_sources/tutorials/concepts/library_design/losses.html
简单说,loss function是对于单个样本而言的,比如对于0-1分类问题,当前预测样本x的输出为t,实际值为y,那么loss function就是y-t,或者abs(y-t);对于连续型数据的预测,也就是回归问题,loss function可以是差值的平方:(y-t)^2
而cost function是对于样本总体而言的,对于0-1分类问题,loss function是n个样本的loss function取值的均值;而对于回归问题,cost function是n个样本的平方误差的平均,俗称均方误差(mean square error)
总结:cost function是各个样本的loss funcion的平均
========== 那么caffe下的loss又是怎么一回事?===========
caffe通常是视觉任务用的深度学习框架,处理的原始数据是图片。每次处理一张图片,这本身可以run,算是OK,但不够好。
每次处理多张图片,称为一个batch(批次),比如训练图片一共有4000张,每个batch处理50张。
按照batch来处理图片后,每个batch算出一个loss,也就是这50张图片的loss平均。当然这个loss其实并不是重点。重点是,用这50个样本,在做梯度下降来更新权值的时候,梯度是根据这50个样本算出来的均值,而不是用某一个图片的梯度:
这也就是要使用batch的原因。
=========== error又是什么 ============
error是说,一个预测结果和实际标签比较,一样的话不算错,不一样就算错(仅考虑分类问题)。
那么我在一个miniBatch之内,比如100张图,每张图对应一个分类的标签,以及一个预测出来的结果,这个预测结果和标签做比较,如果不一致说明“预测错了”。统计所有100张图上“预测错误的结果”的数量,比如有3个,那么error就认为是3,或者表示为3%。
也就是说,error表示的是“累计错误数量的占比”。从这一点来看,error关注的是“是否正确”的累计,而不是“单个结果上错误的程度”,error关注的是“质”,而loss关注的是“错误的程度”(根据loss函数来决定),这一点上,error和loss是有所不同的。