下面我分别对这四种分区方法的概念,他们的使用场景,以及各种分区方法做一个性能比较。
一、概念
1、Range Partitioning
这是最常用的一种分区方法,基于COLUMN的值范围做分区,最常见的是基于时间字段的数据的范围的分区,比如:对于SALE表,可以对销售时间按照月份做一个Range Partitioning。这种分区在数据仓库里用的比较多,以下是
CREATE STATMENT
CREATE TABLE sales_range
(salesman_id NUMBER(5),
salesman_name VARCHAR2(30),
sales_amount NUMBER(10),
sales_date DATE)
COMPRESS
PARTITION BY RANGE(sales_date)
(PARTITION sales_jan2000 VALUES LESS THAN(TO_DATE('02/01/2000','DD/MM/YYYY')),
PARTITION sales_feb2000 VALUES LESS THAN(TO_DATE('03/01/2000','DD/MM/YYYY')),
PARTITION sales_mar2000 VALUES LESS THAN(TO_DATE('04/01/2000','DD/MM/YYYY')),
PARTITION sales_apr2000 VALUES LESS THAN(TO_DATE('05/01/2000','DD/MM/YYYY')));
对于COMPRESS关键字的理解,将在后续的压缩分区讲到
2、Hash Partitioning
Hash Partitioning映射数据到基于HASH算法的分区上,HASH算法将应用你指定的分区关键字,平均的分那些在Partitions中的行。给每一个分区近似相同的大小,要保证数据能平均分配,分区数一般是2N。比如说,需要insert sales_hash 一条数据,ORACLE会通过HASH算法处理salesman_id,然后找到对于的分区表进行insert。Hash Partitioning 是为跨越设备的分布式数据提供了一种理想的方法,HASH算法也很容易转化成RANGE分区方法,特别是当被分区的数据不是历史数据时。
CREATE TABLE sales_hash
(salesman_id NUMBER(5),
salesman_name VARCHAR2(30),
sales_amount NUMBER(10),
week_no NUMBER(2))
PARTITION BY HASH(salesman_id)
PARTITIONS 4;