理解Java垃圾回收_java

当程序创建对象、数组等引用类型的实体时,系统会在堆内存中为这一对象分配一块内存,对象就保存在这块内存中,当这块内存不再被任何引用变量引用时,这块内存就变成垃圾,等待垃圾回收机制进行回收。垃圾回收机制具有三个特征:

垃圾回收机制只负责回收堆内存中的对象,不会回收任何物理资源(例如数据库连接,打开的文件资源等),也不会回收以某种创建对象的方式以外的方式为该对像分配的内存,(例如对象调用本地方法中malloc的方式申请的内存)
程序无法精确控制垃圾回收的运行,只可以建议垃圾回收进行,建议的方式有两种System.gc() 和Runtime.getRuntime().gc()
在垃圾回收任何对象之前,总会先调用它的finalize()方法,但是同垃圾回收的时机一致,调用finalize()方法的时机也不确定。
针对以上三个特征,有三个问题:

1、必须手动的进行清理工作,释放除创建对象的方式以外的方式分配的内存和其它的物理资源。并且要注意消除过期的对象引用,否则可能引起OOM。

手动清理通常用到try...finally...这样的代码结构。

示例如下:

import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;

public class ManualClear {

 public static void main(String[] args) {
  FileInputStream fileInputStream = null;
  try {
   fileInputStream = new FileInputStream("./src/ManualClear.java");
  } catch (FileNotFoundException e) {
   System.out.println(e.getMessage());
   e.printStackTrace();
   return;
  }

  try {
   byte[] bbuf = new byte[1024];
   int hasRead = 0;
   try {
    while ((hasRead = fileInputStream.read(bbuf)) > 0) {
     System.out.println(new String(bbuf, 0, hasRead));
    }
   } catch (IOException e) {
    e.printStackTrace();
   }
  } finally {
   try {
    fileInputStream.close();
   } catch (IOException e) {
    e.printStackTrace();
   }
  }
 }

}

对于过期对象的引用,引起的OOM通常有三种常见的情况,这三种情况通常都不易发现,短时间内运行也不会有什么问题,但是时间久了后,泄漏的对象增加后终会引起程序崩溃。

类自己管理内存时,要警惕内存泄漏
示例如下:

import java.util.Arrays;
import java.util.EmptyStackException;

class Stack{
 private Object[] elements;
 private int size;
 private static final int DEFAULT_INITAL_CAPACITY = 16;

 public Stack() {
  elements = new Object[DEFAULT_INITAL_CAPACITY];
 }

 public void push(Object e){
  ensureCapacity();
  elements[size++] = e;
 }

 public Object pop() {
  if (size == 0) {
   throw new EmptyStackException();
  }

  return elements[--size];
 }

 private void ensureCapacity() {
  if (elements.length == size) {
   elements = Arrays.copyOf(elements, 2 * size + 1);
  }
 }
}

public class StackDemo {

 public static void main(String[] args) {
  Stack stack = new Stack();

  for (int i = 0; i < 10000; i++) {
   stack.push(new Object());
  }

  for(int i = 0; i < 10000; i++) {
   stack.pop();
  }
 }

}

之所以会内存泄漏,是因为那些出栈的对象即使程序其它对象不再引用,但是Stack类中的elements[]数组依然保存着这些对象的引用,导致这些对象不会被垃圾回收所回收,所以,当需要类自己管理内存事,要警惕内部维护的这些过期引用是否被及时解除了引用,本例中只需在出栈后,显示的将

elements[size] = null;即可。

缓存是要警惕内存泄漏
出现这样情况通常是一旦将对象放入缓存,很可能长时间不使用很容易遗忘,通常可以用WakeHashMap代表缓存,在缓存中的项过期后,他们可以被自动删除。或者可以由一个后台线程定期执行来清除缓冲中的过期项。

监听器或回调的注册,最好可以显示的取消注册。
2、不要手动调用finalize(),它是给垃圾回收器调用的

3、避免使用finalize()方法,除非用来作为判断终结条件以发现对象中没有被适当清理的部分;用来作为安全网在手动清理忘记调用的情况下清理系统资源,延后清理总别永不清理要强,并且如果同时记录下忘记清理资源的信息的话,也方便后面发现错误,并及时修改忘记清理的代码;释放对象中本地方法获得的不是很关键的系统资源。

finalize()方法由于其执行时间以及是否确定被执行都不能准确确保,所以最好不用来释放关键资源,但是可用于上面所说的三种情况。其中第一种情况,示例如下:

class Book {
 boolean checkout = false;
 public Book(boolean checkout) {
  this.checkout = checkout;
 }

 public void checkin(){
  checkout = false;
 }

 @Override
 protected void finalize() throws Throwable {
  if (checkout) {
   System.out.println("Error: check out");
  }
 }
}

public class FinalizeCheckObjectUse {

 public static void main(String[] args) {
  new Book(true);
  System.gc();
 }

}

执行结果:

Error: check out
例子中的Book对象,在释放前必须处于checkIn的状态,否则不能释放,finalize中的实现可以帮助及时发现不合法的对象,或者更直接的,在finalize中直接使用某个引用变量引用,使其重新进入reachable的状态,然后再次对其进行处理。

另一点需要注意的时,子类如果覆盖了父类的finalize方法,但是忘了手工调用super.finalize或者子类的finalize过程出现异常导致没有执行到super.finalize时,那么父类的终结方法将永远不会调到。

如下:

class Parent{
  @Override
  protected void finalize() throws Throwable {
    System.out.println(getClass().getName() + " finalize start");
  }
}

class Son extends Parent{
  @Override
  protected void finalize() throws Throwable {
    System.out.println(getClass().getName() + " finalize start");
  }
}
public class SuperFinalizeLost {

  public static void main(String[] args) {
    new Son();
    System.gc();
  }

}

运行结果:

Son finalize start
或者

class Parent{
  @Override
  protected void finalize() throws Throwable {
    System.out.println(getClass().getName() + " finalize start");
  }
}

class Son extends Parent{
  @Override
  protected void finalize() throws Throwable {
    System.out.println(getClass().getName() + " finalize start");
    int i = 5 / 0;
    super.finalize();
  }
}
public class SuperFinalizeLost {

  public static void main(String[] args) {
    new Son();
    System.gc();
  }

}

执行结果:

Son finalize start
对于第二种情况,可以使用try...finally...结构解决,但是对于第一种情况,最好使用一种叫终结方法守护者的方式。示例如下

class Parent2{
  private final Object finalizeGuardian = new Object() {
    protected void finalize() throws Throwable {
      System.out.println("在此执行父类终结方法中的逻辑");
    };
  };
}

class Son2 extends Parent2{
  @Override
  protected void finalize() throws Throwable {
    System.out.println(getClass().getName() + " finalize start");
    int i = 5 / 0;
    super.finalize();
  }
}

public class FinalizeGuardian {

  public static void main(String[] args) {
    new Son2();
    System.gc();
  }

}

执行结果:

在此执行父类终结方法中的逻辑
Son2 finalize start
这样可以保证父类的终结方法中所需做的操作执行到。

以上就是本文的全部内容,希望对大家的学习有所帮助。

以上是小编为您精心准备的的内容,在的博客、问答、公众号、人物、课程等栏目也有的相关内容,欢迎继续使用右上角搜索按钮进行搜索java
垃圾回收
java垃圾回收机制、java 垃圾回收、java 垃圾回收算法、java垃圾回收机制原理、java的垃圾回收机制,以便于您获取更多的相关知识。

时间: 2024-07-30 02:16:25

理解Java垃圾回收_java的相关文章

简单谈谈Java垃圾回收_java

好久没看关于java的书了,最近,看了James Gosling的<<Java程序设计语言>>,做了一些读书笔记.这部分是关于垃圾回收的. 一. 垃圾回收 对象是使用new创建的,但是并没有与之相对应的delete操作来回收对象占用的内存.当我们完成对某个对象的使用时,只需停止该对象的引用: ->将引用改变为指向其他对象 ->将引用指向null ->从方法中返回, 使得该方法的局部变量不复存在 要点: ->当我们从任何可执行代码都无法到达某个对象时,它所占用

浅析Java内存模型与垃圾回收_java

1.Java内存模型 Java虚拟机在执行程序时把它管理的内存分为若干数据区域,这些数据区域分布情况如下图所示: 程序计数器:一块较小内存区域,指向当前所执行的字节码.如果线程正在执行一个Java方法,这个计数器记录正在执行的虚拟机字节码指令的地址,如果执行的是Native方法,这个计算器值为空. Java虚拟机栈:线程私有的,其生命周期和线程一致,每个方法执行时都会创建一个栈帧用于存储局部变量表.操作数栈.动态链接.方法出口等信息. 本地方法栈:与虚拟机栈功能类似,只不过虚拟机栈为虚拟机执行J

Java垃圾回收finalize()作用详解_java

finalize 方法使用案例 package test; class TestGC { private String str = "hello"; TestGC(String str) { this.str = str; } public void finalize() { System.out.println(str); } } public class Hello { /** * @param args */ public static void main(String[] ar

java垃圾回收机制

Java的堆是一个运行时数据区,类的实例(对象)从中分配空间.Java虚拟机(JVM)的堆中储存着正在运行的应用程序所建立的所有对象,这些对象通过new.newarray.anewarray和multianewarray等指令建立,但是它们不需要程序代码来显式地释放.一般来说,堆的是由垃圾回收 来负责的,尽管JVM规范并不要求特殊的垃圾回收技术,甚至根本就不需要垃圾回收,但是由于内存的有限性,JVM在实现的时候都有一个由垃圾回收所管理的堆.垃圾回收是一种动态存储管理技术,它自动地释放不再被程序引

[JVM]成为JavaGC专家(1)—深入浅出Java垃圾回收机制

对于Java开发人员来说,了解垃圾回收机制(GC)有哪些好处呢?首先可以满足作为一名软件工程师的求知欲,其次,深入了解GC如何工作可以帮你写出更好的Java应用. 这仅仅代表我个人的意见,但我坚信一个精通GC的人往往是一个好的Java开发者.如果你对GC的处理过程感兴趣,说明你已经具备较大规模应用的开发经验.如果你曾经想过如何正确的选择GC算法,那意味着你已经完全理解你所开发的应用的特点.当然,我们不能以偏概全,这不能作为评价一个好的开发人员的共通标准.但是,我要说的是,深入理解GC是成为一名伟

Java垃圾回收机制中对象引用遍历的实现原理

问题描述 有没有大牛给详细解释下Java垃圾回收机制中对象引用遍历的实现原理,java回收机制中的有向图是何时建立.如何建立,有向图有几个? 解决方案 解决方案二:垃圾回收在jvm中并没有特定的算法,不同的人可以有不同的实现,未必会使用有向图譬如一种实现可以这样,在没有内存可分配时,直接抛出OutOfMemory都是符合规范的解决方案三:该回复于2011-04-07 11:01:48被版主删除解决方案四:这个要讲的话就多了解决方案五:有本书好像叫深入JVM,你可以找一下,里面解释的很详细解决方案

细述 Java垃圾回收机制→Java Garbage Collection Introduction

计划写一个介绍Java垃圾回收基础的系列文章,共分四部分: Java垃圾回收简介 Java垃圾回收器是如何工作的? 各种类型的Java垃圾回收器 Java垃圾回收的监控和分析 本文是这个系列的第一篇文章,这篇文章将会介绍一些基本术语,如:JDK,JVM,JRE,HotSpot VM,以及理解JVM的架构和Java堆内存结构.在开始学习Java垃圾回收机制之前确实有必要了解一下这些基本东西. 关键的Java术语 Java API–一个帮助程序员创建Java应用的打包好的库集合 Java Devel

细述 Java垃圾回收机制→How Java Garbage Collection Works?

这是垃圾回收机制系列文章的第二篇.希望您已经读过了第一部分Java垃圾回收简介. Java垃圾回收是一个自动运行的管理程序运行时使用的内存的进程.通过GC的自动执行JVM将程序员从申请和释放内存的繁重操作中解放出来. Java垃圾回收GC初始化 作为一个自动执行的进程,程序员不需要在代码中主动初始化GC.Java提供了System.gc()和Runtime.gc()这两个hook来请求JVM调用GC进程. 尽管要求系统机制给程序员提供调用GC的机会,但是实际上这是由JVM负责决定的.JVM可以选

收集器-java垃圾回收机制怎么回收变量

问题描述 java垃圾回收机制怎么回收变量 如下: 1.Object aobj=new Object() 2.Object bobj = new Object() 3. Object cobj = new Object() 4.aobj = bobj; 5.aobj = cobj; 6.cobj = null; 7.aobj = null; 那么第几行的obj符合垃圾收集器的收集标准. A:1 B:2 C:3 D:4 E:5 F:6 G:7 垃圾收集器的收集标准是什么? 是不是不引用了就可以收集