[物理学与PDEs]第3章第4节 磁流体力学方程组的数学结构

1.  在流体存在粘性、热传导及 $\sigma\neq \infty$ 时, 磁流体力学方程组是一个拟线性对称双曲 - 抛物耦合组.

 

 

2.  在流体存在粘性、热传导但 $\sigma=\infty$ 时, 磁流体力学方程组是一个拟线性对称双曲 - 抛物耦合组.

 

 

3.  如果流体没有任何耗散过程, 此时称为理想磁流体, 而其方程称为理想磁流体力学方程组, 它是一个具有守恒律形式的一阶拟线性对称双曲组.

 

时间: 2024-10-15 14:20:20

[物理学与PDEs]第3章第4节 磁流体力学方程组的数学结构的相关文章

[物理学与PDEs]第3章第2节 磁流体力学方程组 2.1 考虑到导电媒质 (等离子体) 的运动对 Maxwell 方程组的修正

1.  Maxwell 方程组 $$\bee\label{3_2_1_Maxwell} \bea \Div{\bf D}&=\rho_f,\\ \rot{\bf E}&=-\cfrac{\p {\bf B}}{\p t},\\ \Div{\bf B}&=0,\\ \rot{\bf H}&=\cfrac{\p {\bf D}}{\p t}+{\bf j}_f, \eea \eee$$ 其中 ${\bf D}=\ve {\bf E}$, ${\bf B}=\mu{\bf H}$

[物理学与PDEs]第3章第2节 磁流体力学方程组 2.2 考虑到电磁场的存在对流体力学方程组的修正

1.  连续性方程 $$\bex \cfrac{\p \rho}{\p t}+\Div(\rho{\bf u})=0.  \eex$$     2.  动量守恒方程 $$\bex \cfrac{\p }{\p t}(\rho{\bf u}) +\Div(\rho {\bf u}\otimes{\bf u}-{\bf P}) -\mu\rot{\bf H}\times{\bf H}=\rho {\bf F}, \eex$$ 或 $$\bex \rho \cfrac{\rd {\bf u}}{\rd

[物理学与PDEs]第3章第2节 磁流体力学方程组 2.4 不可压情形的磁流体力学方程组

不可压情形的磁流体力学方程组 $$\beex \bea \cfrac{\rd {\bf H}}{\rd t}-({\bf H}\cdot\n){\bf u}&=\cfrac{1}{\sigma\mu_0}\lap {\bf H},\\ \Div{\bf H}&=0,\\ \cfrac{\rd {\bf u}}{\rd t}+\n \sex{p+\cfrac{1}{2}\mu_0H^2} &=\mu_0({\bf H}\cdot\n){\bf H}+\bar \mu \lap{\bf

[物理学与PDEs]第3章第2节 磁流体力学方程组 2.3 磁流体力学方程组

1.  磁流体力学方程组 $$\beex \bea \cfrac{\p {\bf H}}{\p t} &-\rot({\bf u}\times{\bf H})=\cfrac{1}{\sigma\mu_0}\lap{\bf H},\\ \Div&{\bf H}=0,\\ \cfrac{\p \rho}{\p t}&+\Div(\rho {\bf u})=0,\\ \cfrac{\p (\rho{\bf u})}{\p t}&+\Div(\rho{\bf u}\times{\b

[物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构

5.5.1 线性弹性动力学方程组     1.  线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\rho_0{\bf b}\\ &=\rho_0\cfrac{\p}{\p t}\sex{\cfrac{\p{\bf u}}{\p t}} -\Div_x({\bf A}{\bf E})-\rho_0{\bf b}\quad\sex{{\bf u}={\bf y}-{\bf x}}\\ &=\

[物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题

5. 6 弹性静力学方程组的定解问题           5. 6. 1 线性弹性静力学方程组         1.  线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cfrac{\p ^2u_k}{\p x_j\p x_l}=\rho_0b_i,\quad i=1,2,3.  \eee$$     2.  (Korn 不等式) 设 $\Omega\subset{\bf R}^3$ 为有界区域, 则 $$\bex \exists\

[物理学与PDEs]第2章第1节 理想流体力学方程组 1.2 理想流体力学方程组

1.  质量守恒定律: 连续性方程 $$\bee\label{2_1_2_zl} \cfrac{\p\rho}{\p t}+\Div(\rho{\bf u})=0.  \eee$$   2.  动量守恒定律: $$\bee\label{2_1_2_dl} \cfrac{\p}{\p t}(\rho{\bf u})+\Div(\rho{\bf u}\otimes {\bf u}+p{\bf I})=\rho{\bf F}. \eee$$ 用 \eqref{2_1_2_zl} 可化简 \eqref{

[物理学与PDEs]第2章第1节 理想流体力学方程组 1.3 理想流体力学方程组的数学结构

1.  局部音速 $c$: $c^2=\cfrac{\p p}{\p \rho}>0$.     2.  将理想流体力学方程组 $$\beex \bea \rho\cfrac{\p {\bf u}}{\p t} +(\rho {\bf u}\cdot\n){\bf u}+\n p&=\rho{\bf F},\\ \cfrac{1}{\rho c^2}\cfrac{\p p}{\p t} +\n\cdot{\bf u}+\cfrac{1}{\rho c^2}({\bf u}\cdot\n)p&

[物理学与PDEs]第2章第2节 粘性流体力学方程组 2.3 广义 Newton 法则---本构方程

1.  ${\bf P}=(p_{ij})$, 而 $$\bex p_{ij}=-p\delta_{ij}+\tau_{ij}, \eex$$ 其中 $\tau_{ij}$ 对应于摩擦切应力.     2.  由于内摩擦力只与相对运动有关, 而 $\tau_{ij}$ 与速度无关, 而只与速度梯度有关, 且为线性的 (实验已很好的证实): $$\bex \tau_{ij}=c_{ijkl}\cfrac{\p u_k}{\p x_l}. \eex$$ 由于 $(\tau_{ij})$ 和 $\se