树、二叉树基础

刚看到堆排序,顺便记录一下关于树的一些基本概念:

前言

前面介绍的栈、队列都是线性结构(linear structure)。而树是非线性结构(non-linear structure)。因此,树中的元素之间一般不存在类似于线性结构的一对一的关系,更多地表现为多对多的关系。直观地看,它是数据元素(在树中称为节点)按分支关系组织起来的结构。显然,树形结构是比线性结构更复杂的一种数据结构类型。

一、树

树的定义:树是含有n个节点的有穷集合,其中有一个节点比较特殊称为根节点。在图示树时,用一条边连接两个有逻辑关系的节点,这个关系被称为父子关系。

二、二叉树

二叉树(Binary Tree)由节点的有限集合构成。这个集合或者为空集,或者为由一个根节点(root)和两棵互不相交,分别称为这个根的左子树(left subtree)和右子树(right subtree)的二叉树组成的集合。

一棵二叉树的示意图:

三、树和二叉树的主要区别

  1. 树中节点的最大度数没有限制,而二叉树节点的度不超过2。
  2. 树中节点的孩子节点,无左右之分,而二叉树中是有区分的,即孩子是有区别的:左孩子、右孩子,且次序不可颠倒。
  3. 树的结点个数至少为1,而二叉树的结点个数可以为0。

四、常见概念

  1. 节点的度:某节点的度定义为该节点孩子节点的个数。
  2. 叶子节点:度为0的节点。
  3. 树的度:一棵树中,最大的节点的度称为树的度。
  4. 节点的高度:从该节点起到叶子节点的最长简单路径的边数。(简单路径:无重复边的路径)
  5. 树的高度:根节点的高度。
  6. 节点的层数:从根开始定义起,根为第1层,根的子节点为第2层,以此类推。
  7. 数的层数:根节点的层数。
  8. 节点的深度:即该节点的层数。
  9. 树的深度:根节点的深度。
  10. 外节点:叶子节点。
  11. 内节点:除叶子节点之外的节点。
  12. 满二叉树:二叉树中节点的度只能是0或2。
  13. 完全二叉树:除最后一层,每一层的节点数都达到最大。最后一层若是没满,则节点集中在左边,空的只能是右边。
  14. 扩充二叉树:对二叉树中度为1的节点和叶子节点添加空节点,使之成为满二叉树。

注:关于树深度、层数、高度的定义会有不同的说法:有从0开始计数的,也有从1开始计数的。从哪儿开始计数不是关键,关键在于一致性,量的写法要一致。

 

五、几个量的关系

  1. 对于二叉树,根节点是第一层,则第i层至多有个结点。若共有k层,则最多有节点个。
  2. 按层次顺序对一棵有n个节点的完全二叉树的所有节点从0到n-1编号。若父节点的编号是i,则左孩子的编号是2*i+1,右孩子的编号是2*i+2。(当然,这是在存在左右孩子的情况下)。同样的,若孩子(无论左右孩子)节点是i,则父节点是(i-1)/2。
  3. 对于一棵满二叉树,外部节点或者说是叶子节点数是n,则内部节点数是n-1。
  4. 对于一棵二叉树,用ni表示度为i的节点个数,则n0=n2+1。证明如下:总节点数n=n0+n1+n2。用e表示边数,则n=e+1,这是因为除根节点外,每一个节点都和一条边对应。同时,e=2n2+n1,推出n0+n1+n2=2n2+n1+1,化简即得n0=n2+1。这个结论用语言表述:二叉树中,叶子节点比度为2的节点多一个。
  5. 有n个节点的完全二叉树,树高度,即logn向下取整,高度从0计数。
  6. 在二叉树中,第i层的第一个节点(最左边的节点)的编号是,层数从0计数。这个量在选择排序:树形选择中用到了。

六、示意图




 

专栏目录:

 

 转至:http://blog.csdn.net/zhangxiangdavaid/article/details/36189717

时间: 2024-10-27 17:56:02

树、二叉树基础的相关文章

纸上谈兵: 树, 二叉树, 二叉搜索树[转]

树的特征和定义 树(Tree)是元素的集合.我们先以比较直观的方式介绍树.下面的数据结构是一个树: 树有多个节点(node),用以储存元素.某些节点之间存在一定的关系,用连线表示,连线称为边(edge).边的上端节点称为父节点,下端称为子节点.树像是一个不断分叉的树根. 每个节点可以有多个子节点(children),而该节点是相应子节点的父节点(parent).比如说,3,5是6的子节点,6是3,5的父节点:1,8,7是3的子节点, 3是1,8,7的父节点.树有一个没有父节点的节点,称为根节点(

纸上谈兵: 树, 二叉树, 二叉搜索树

作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢!   树的特征和定义 树(Tree)是元素的集合.我们先以比较直观的方式介绍树.下面的数据结构是一个树: 树有多个节点(node),用以储存元素.某些节点之间存在一定的关系,用连线表示,连线称为边(edge).边的上端节点称为父节点,下端称为子节点.树像是一个不断分叉的树根. 每个节点可以有多个子节点(children),而该节点是相应子节点的父节点(parent).比如说,3,5

数据结构中树与二叉树基础算法的比较

一:树的创建 在数据结构中,树是以二叉树的形式储存的. 树转换为二叉树形式分为三步: ⑴加线--树中所有相邻兄弟之间加一条连线. ⑵去线--对树中的每个结点,只保留它与第一个孩子结点之间的连线,删去它与其它孩子结点之间的连线. ⑶层次调整--以根结点为轴心,将树顺时针转动一定的角度,使之层次分明.   转换后结果如图: 所以树的创建算法有两个思路: 1.将树转化为二叉树后,以二叉树中结点的关系输入而创建树. 2.直接以树中结点的关系输入,用代码转换为相应的二叉树. 第一种方法实际就是二叉树创建,

树, 二叉树及二叉搜索树的简介与实现

树的特征和定义 树(Tree)是元素的集合.我们先以比较直观的方式介绍树.下面的数据结构是一个树: 树有多个节点(node),用以储存元素.每个节点可以有多个子节点(children),而该节点是相应子节点的父节点(parent).比如说,3,5是6的子节点,6是3,5的父节点:1,8,7是3的子节点, 3是1,8,7的父节点.树有一个没有父节点的节点,称为根节点(root),如图中的6.没有子节点的节点称为叶节点(leaf),比如图中的1,8,9,5节点.从图中还可以看到,上面的树总共有4个层

[LeetCode] Binary Tree Paths - 二叉树基础系列题目

目录:1.Binary Tree Paths - 求二叉树路径 2.Same Tree - 判断二叉树相等 3.Symmetric Tree - 判断二叉树对称镜像 Binary Tree Paths 题目概述:Given a binary tree, return all root-to-leaf paths. For example, given the following binary tree: 1 / \ 2 3 \ 5 All root-to-leaf paths are: ["1-

asp.net TreeView与XML三步生成列表树_基础应用

刚我在做Tree view 绑定时自己摸索了一下,网上有人说TreeView绑定数据源,用什么递归绑定啥的,我不想看了,就自己试着写了一个我是这样做的,如果有什么问题请大神指导,我是菜鸟额..1:页面TreeView 叫tvFunction2:新建 adminFunction.xml 复制代码 代码如下: <?xml version="1.0" encoding="utf-8" ?><functions>  <function name

二叉树学习笔记之B树、B+树、B*树

动态查找树主要有二叉查找树(Binary Search Tree),平衡二叉查找树(Balanced Binary Search Tree), 红黑树 (Red-Black Tree ), 都是典型的二叉查找树结构,查找的时间复杂度 O(log2-N) 与树的深度相关,降低树的深度会提高查找效率,于是有了多路的B-tree/B+-tree/ B*-tree (B~Tree). 关于这B树以及B树的两种变体,其实很好区分, 相比B树,B+树不维护关键字具体信息,不考虑value的存储,所有的我们需

数据结构基础 伸展树

问题描述 数据结构基础 伸展树 为什么我自己画出来的展开的树和书上的不一样呢,是哪步旋转错了么? 解决方案 数据结构 - 树(基础)数据结构基础(3)-------------树第六章数据结构基础之树部分 解决方案二: 图看不清,谁知道你问的啥.

《程序设计解题策略》——1.3 利用线段树解决区间计算问题

1.3 利用线段树解决区间计算问题 在现实生活中,我们经常遇到与区间有关的问题,例如,记录一个区间的最值(最大或最小值)和总量,并在区间的插入.删除.修改中维护这些最值和总量:再如,统计若干矩形并的面积.线段树拥有良好的树形二分特征,我们可以从其定义和结构中发现,在线段树的基础上完成这些问题的计算操作,是十分简捷和高效的.1.3.1 线段树的基本概念 一棵二叉树,记为T(a,b),参数a.b表示该节点表示区间[a,b].区间的长度b-a记为L.递归定义T[a,b]: 若区间长度L>1:区间[a,