扩展欧几里得算法

  问题:ax+by=c,已知a、b、c,求解使该等式成立的一组x,y。其中a、b、c、x、y均为整数 a,b的最大公约数为gcd(a,b)。如果c不是gcd(a,b)的倍数,则该等式无解,因为等式左边除以gcd(a,b)是整数,而等式右边除以gcd(a,b)后为小数。因此,只有当c是gcd(a,b)的倍数的时候,该等式有解。这样,可以通过计算使ax1+by1=gcd(a,b)成立的x1、y1,然后有x=(c/gcd(a,b))*x1,y=(c/gcd(a,b))*y1,得到x,y。 问题就被转换为求使ax+by=gcd(a,b)成立的一组x,y。  

  如果b不为零,根据欧几里德定理,可以设 ax1+by1=gcd(a,b)=gcd(b,a%b)=bx2+(a%b)y2=bx2+(a-(a/b)*b)y2 化简后有x1=y2,y1=x2-(a/b)y2。因此x1,y1依赖于x2,y2,同理依次类推递归调用求出x3,y3,x4,y4……,类似于辗转相除,直到b=0时,求出xn,yn,便可以推出x1,y1的值。

  

 1 // 返回a,b的最大公约数
 2 int extended_euclid(int a, int b, int &x, int &y)
 3 {
 4     if(b == 0) // gcd(a, b) == a
 5      {
 6          x = 1;
 7          y = 0;
 8         return a;
 9      }
10     int n = extended_euclid(b, a%b, x, y);
11     int tmp = x;
12      x = y;
13      y = tmp - static_cast<int>(a/b)*y;
14     return n;
15 }

   其它解为x0 + k*b/gcd(a,b),y0-k*a/gcd(a,b),具体参考白书P179.

时间: 2024-09-27 03:47:27

扩展欧几里得算法的相关文章

数论之 素因子分解,素数筛选法,欧拉函数和扩展欧几里得算法 (整理)

今天突然想复习一下数论,也就顺便整理了一下关于数论的基础知识, 以后用的时候直接用就行了,也不用现敲了,其实就是有点懒.... 具体解释都在代码里有解释 直接上代码了: #include <iostream> #include <cstdio> #include <cstring> #include <cstdlib> #include <cmath> #include <vector> #include <queue>

C - Line——(扩展欧几里得算法)

传送门 C. Line time limit per test 1 second memory limit per test 256 megabytes input standard input output standard output A line on the plane is described by an equation Ax + By + C = 0. You are to find any point on this line, whose coordinates are in

C语言 扩展欧几里得算法代码_C 语言

给定两个正整数m和n,我们计算它们的最大公因子d和两个整数a和b,使得a*m+b*n=d 算法流程 E1.置a'=b=1;a=b'=0;c=m,d=n; E2.计算d和r,使得c=q*d+r; E3.若r==0;则退出,当前已有a*m+b*n=d; E4;c=d;d=r;t=a';a'=a;a=t-q*a;t=b';b'=b;b=t-q*b;返回E2. 证明 对于已有的m和n,假设m>n;如果刨除变量a,b,a',b';算法与欧几里得算法完全一样,为计算最大公约数的算法. 最终要求的为a*m+b

扩展欧几里得算法求方程特解

对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然存在整 数对 x,y ,使得 gcd(a,b)=ax+by. 代码实现如下: #include <iostream> using namespace std; typedef long long LL; void exgcd(int a,int b,int &x,int &y) { if(b==0) { x=1; y=0; return ; } exgcd(b,a%b,x,y); int tm

算法 数据结构-求两个数最大公约数,欧几里得算法

问题描述 求两个数最大公约数,欧几里得算法 求两个数最大公约数,欧几里得算法,这两种方法除第一种可以避免除数为零的情况,两者有什么区别?谢谢 public static int gcd(int p, int q) { if (q == 0) return p; int r = p % q; return gcd(q, r) ; } public static int gcd(int p, int q) { int r = p % q; if (r == 0) return q; return g

【算法数据结构Java实现】欧几里得算法

1.背景            欧几里得算法是一个求最大因子的快速算法.如果m,n存在最大因子k,假设m=x*n+r,那么m和n可以整出k的话,r也肯定可以整除k            因为定理:如果M>N,则M mod N<M/2 ,说明时间复杂度是O(log(n)) 2.代码            package Algorithm_analysis; public class Euclid { public static void main(String[] args){ int m=6

菜鸟学算法----改进后的欧几里得算法

对于正整数 a和b  利用欧几里得算法可以得出 一个最大公因数 ,  改进后的算法满足  最大公因数 q=xa+yb   ; 那么我们如何求出 a和b呢 . 书上是这么写的 那么我们用代码把他实现出来, 向大家推荐一本书<The Art Of Computer.Programmer>   第一篇的数学部分   真心的枯燥 我选择的方式 是 适当的囫囵吞枣 对于这一样 ,但是对于其中讲述的算法 还是要仔细的去看滴 .   对于算法的分析  我直接上原书图 #include "stdaf

辗转相除法_欧几里得算法_java的实现(求最大公约数)

辗转相除法,又被称为欧几里德(Euclidean)算法, 是求最大公约数的算法. 当然也可以求最小公倍数. 算法描述 两个数a,b的最大公约数记为GCD(a,b).a,b的最大公约数是两个数的公共素因子的乘积.如462可以分解成2 × 3 × 7 × 11:1071可以分解成3 × 3 × 7 × 17.462和1071的最大公约数等于它们共有的素因数的乘积3 × 7 = 21.如果两数没有公共的素因数,那么它们的最大公约数是1,也即这两个数互素,即GCD(a,b)=1.另g=GCD(a,b),

SharePoint 2013自定义扩展菜单的例子

接上文:http://www.bianceng.cnhttp://www.bianceng.cn/web/sharepoint/201406/41934.htm 例七 列表设置菜单扩展(listedit.aspx) 扩展效果 XML描述 <CustomAction Id="CustomAction1" Description="博客园-霖雨" Title="博客园-霖雨" GroupId="GeneralSettings"