本文所述实例为Python用3行代码实现解一元一次方程,代码简洁高效,具体用法如下:
>>> solve("x - 2*x + 5*x - 46*(235-24) = x + 2") 3236.0
功能代码如下:
def solve(eq,var='x'): eq1 = eq.replace("=","-(")+")" c = eval(eq1,{var:1j}) return -c.real/c.imag
下面就来解读下代码吧。
首先是第一行,它将等式进行了变形,生成了一个结果为0的算式“x - 2*x + 5*x - 46*(235-24) -( x + 2)”。
第二行用eval来执行这个算式,并将x = 1j代入算式,结果是-9708+3j。
注意x = 1j,所以这个方程就化简为“-9708+3x = 0”了,只要将-(-9708) / 3就能得到x了。
而-9708是这个复数的实部,3是这个复数的虚部,于是结果变成了“-c.real/c.imag”。
因此很显然,这个函数是不能解复数方程的。
顺带一提,Python 2.x的/运算会使用整数除法,导致小数部分丢失,所以要获得正确结果就应该使用Python 3.x。
希望本文所述实例对大家学习Python能有所帮助。
以上是小编为您精心准备的的内容,在的博客、问答、公众号、人物、课程等栏目也有的相关内容,欢迎继续使用右上角搜索按钮进行搜索python
, 解
方程
python实现简单爬虫、python实现kmeans聚类、svm python 代码实现、python 决策树实现、python实现ssh登录,以便于您获取更多的相关知识。
时间: 2024-09-08 23:08:48