[实践]数据科学驱动力矩阵方法介绍

在当今的大数据时代,利用数据科学理论进行数据分析起着越来越重要的作用。探讨不同数据技巧类型和熟练程度对相关项目有着怎样的影响也开始具有重要意义。近日,AnalyticsWeek的首席研究员、Bussiness Qver Broadway的总裁Bob
Hayes博士就公开了研究数据分析项目成功所必需技能的相关结果。Bob所提出的基于技能的数据科学驱动力矩阵方法,可以指出最能改善数据科学实践的若干技能。

数据技能的熟练程度

首先,Bob在AnalyticsWeek的研究包含了很多向数据专家提出的,有关技能、工作角色和教育水平等有关的问题调查。该调查过程针对5个技能领域(包括商业、技术、编程、数学和建模以及统计)的25个数据技能进行,将其熟练程度划分为了6个等级:完全不知道(0分)、略知(20分)、新手(40)、熟练(60分)、非常熟练(80分)和专家(100分)。这些不同的等级就代表了数据专家给予帮助或需要接受帮助的能力水平。其中,“熟练”表示刚好可以成功完成相关任务,为某个数据技能所能接受的最小等级。“熟练”以下的等级表示完成任务还需要帮助,等级越低需要的帮助越多;而“熟练”以上的等级则表示给予别人帮助的能力,等级越高给予的帮助可以更多。

Bob列出了4中不同工作角色对于25种不同数据技能的熟练程度。从上图可以看出,不同领域的专家对其领域内技能的掌握更加熟练。然而,即使是数据专家对于某些技能的掌握程度也达不到“熟练”的程度。例如,上图中浅黄色和浅红色区域都在60分以下。这些技能包括非结构化数据、NLP、机器学习、大数据和分布式数据、云管理、前端编程、优化、概率图模型以及算法和贝叶斯统计。而且,针对以下9种技能,只有一种类型的专家能够达到熟练程度——产品设计、商业开发、预算编制、数据库管理、后端编程、数据管理、数学、统计/统计建模以及科学/科学方法。

并非所有的数据技能都同等重要

接下来,Bob继续探讨了不同数据技能的重要性。为此,AnalyticsWeek的研究调查了不同数据专家对其分析项目结果的满意程度(也表示项目的成功程度):从0分到10分,其中0分表示极度不满意,10分表示极度满意。

对于每一种数据技能,Bob都将数据专家的熟练程度和项目的满意度进行了关联。下表就列出了4种工作角色的技能关联情况。表中关联度越高的技能就表示该技能对项目成功的重要性越高。而表中上半部分的技能相比于下半部分的技能对于项目结果更加重要。从表中可以看出,商业管理者和研究者的数据技能和项目结果的满意度关联度最高(平均r=0.30),而开发人员和创新人员的关联度只有0.18。此外,四种工作角色中不同数据技能之间的平均关联度只有0.01,表明对于一种数据专家是必须的数据技能对于其他数据专家未必是必须的。

数据科学驱动力矩阵:图形化结果

基于熟练程度和关联度的结果,Bob绘出了数据科学驱动力矩阵(Data Science Driver
Matrix,DSDM)的示意图。其中,x轴代表所有数据技能的熟练程度,y轴代表技能与项目结果的关联度,而原点则分别对于熟练程度的60分和关联度的0.30。

结果解读:改善数据科学的实践

在DSDM中,每一种数据技能都会落在其中的一个象限中。由此,这种技能所代表的含义也就不同。

  1. 象限1(左上):该区域内的技能对于项目结果非常重要,但熟练程度却不高。那么,通过聘请掌握相关技能的数据专家或者加强相关技能的员工培训,项目就可以取得很好的改进。
  2. 象限2(右上):该区域内的技能对于项目结果非常重要,而掌握的熟练程度也不低。
  3. 象限3(右下):该区域内的技能对于项目结果而言为非必须,但掌握的熟练程度较高。因此,需要避免在这些技能上的过度投入。
  4. 象限4(左下):该区域内的技能对于项目结果而言为非必须,掌握的熟练程度也不高。但是,仍然没有必须要加强对这些技能的投入。

对于不同数据角色的DSDM

Bob针对商业管理者、研究者、开发人员和创新人员4中角色分别创建了DSDM,并主要关注落在第一象限的技能。

商业管理者

对于商业管理者而言,第一象限中的技能包括统计学/统计建模、数据挖掘、科学/科学方法、大数据和分布式数据、机器学习、贝叶斯统计、优化、非结构化数据、结构化数据以及算法。而没有任何技能落在第二象限。

开发人员

对于开发人员,只有系统管理和数据挖掘两种技能落在第一象限。绝大部分技能都落在第四象限。

创新人员

对于创新人员,共有数学、数据挖掘、商业开发、概率图模型和优化等五种技能落在第一象限。而绝大部分技能都落在第四象限。

研究者

对于研究者,共有算法、大数据和分布式数据、数据管理、产品设计、机器学习和贝叶斯统计等五种技能落在第一象限。而落在第二象限的技能却很少。

结论

从以上的研究中,Bob得到以下结论:

  1. 无论是对于哪个领域的专家,数据挖掘对于项目结果都十分重要。
  2. 商业管理者和研究者可以通过改善数据技能来增加数据分析项目的满意度。
  3. 某些特殊的数据技能对于一些分析项目的结果非常重要。

除此之外,Bob还提出团队合作对于项目成功也有着非凡的意义。

原文发布时间为:2015-12-26

时间: 2024-11-10 01:10:08

[实践]数据科学驱动力矩阵方法介绍的相关文章

sql批量删除数据的几种方法介绍

sql批量删除数据的几种方法介绍 a是A表的一列,存在a=1的数据 1.Delete from A where exists (Select 1 where a=1)  2.Delete from A where exists (Select 1 from A where a=1) 结果 1:只删除a=1一条数据,2:删除所有数据. ,里面的数据是yyyy.mm.dd格式的,另外由表单提交要删除的某一年的数据,该表单名为Year,我现在想通过一个SQL语句批量删除某一年的所有记录,比如删除所有该

PHP导出MySQL数据到Excel的方法介绍

经常会碰到需要从数据库中导出数据到Excel文件,用一些开源的类库,比如 PHPExcel,确实比较容易实现,但对大量数据的支持很不好,很容易到达PHP内存使用上限.这里的方法是利用fputcsv写CSV文件的方法,直接向浏览器输出Excel文件. <?php // 输出Excel文件头,可把user.csv换成你要的文件名 header('Content-Type: application/vnd.ms-excel'); header('Content-Disposition: attachm

《Python数据科学实践指南》一导读

前言 为什么要写这本书 我接触大数据技术的时间算是比较早的,四五年前当大数据这个词火遍互联网的时候,我就已经在实验室里学习编程及算法的知识.那个时候我一心想要做学术,每天阅读大量的英文文献,主要兴趣更多的是在机器人和人工智能上.研究生毕业时我本来想实现早先的愿望,继续攻读博士学位,不过思来想去觉得不应该错过大数据这个机会,所以毅然决定投入大数据行业中. 在工作之初,市面上已经存在一些介绍大数据相关技术的权威著作,其中很多还是很底层的或特定领域的专著.但即使是我这种自诩为"学院派"的人看

关于数据科学的那些事

更多深度文章,请关注云计算频道:https://yq.aliyun.com/cloud 请收下这份关于人工智能的根目录--博客整理系列(一) 关于数据科学的那些事--博客整理系列(二) 机器学习必备手册--博客整理系列(三) 扩展眼界的都在这--博客整理系列(四) 深度学习必备手册(上)--博客整理系列(五) 深度学习必备手册(下)--博客整理系列(六) 随着科技的发展,人类社会拥有数据的规模增长很快,每时每刻.从天到地都有大量数据被产生和存储下来.这些数据被积累下来,到底怎么样使用才能创造出我

2016美国大选预测失败意味着什么?14位专家帮你分析数据科学的未来

雷锋网按:2016年眼看就要结束,外媒KDnuggets近期就机器学习.人工智能.大数据.数据科学和预测分析等领域在2016年取得的主要发展,以及2017年可能发生的变化趋势,询问了业内诸多的专家学者,组成了一个系列文章.昨天,雷锋网(公众号:雷锋网)编译了其中关于大数据的文章:<大数据领域在2016年都有哪些成果及趋势?听听8位专家怎么说>,今天带来关于数据科学和预测分析的部分. 本文中一共采访了14位数据科学和预测分析领域的专家.除了表示大数据和预测分析技术将在2017年度得到更大的发展之

《 营销数据科学: 用R和Python进行预测分析的建模技术》——导读

前 言 "人总会失去养育自己的一切,自然界的事物莫不如此.勇敢的人总是从容应对,静观其变,而不会溜之大吉." --2012年美国电影<南方的野兽>中赫什帕皮(奎温简妮·沃利斯饰) 以前的市场营销教材编写者总会推广"营销理念",说营销既不是销售也不是买卖,而是去了解和满足顾客需求.他们往往把"营销研究(市场调查)"和"市场研究"区分开,把前者列为一门商业学科,而把后者划入经济学的范畴."营销研究"

如何构建一个高效的数据科学部门

这篇文章在Hacker News转载后产生很热烈的讨论,主要是从工程师的角度来看问题,讨论了很多有关人员管理和团队分工等一些很现实的问题.不是所有人都同意文中的观点和解决方案,也有很多人写出了自己的经历来佐证作者的想法.争议主要在于ETL工程师的工作价值以及不同职责间的分工问题. "您的团队和贵公司数据科学家之间关系如何?"我在面试数据平台工程师时,这绝对是我听到的最多的一个问题.这是个好问题,提问者可以有效的衡量这个新职位的好坏.我很乐于回答这个问题.不过我宁愿这个问题不出现,因为面

研究了数千个在线课程,我整理了一份数据科学入门课清单

一年前,我退出了加拿大最好的计算机科学项目之一,利用在线资源开始创建属于自己的数据科学硕士课程.我意识到我可以通过edX, Coursera,以及Udacity学习我所需要的一切,而且学的更快.效率更高,学费更低. 数据可视化:Alanah Ryding 现在我差不多快要完成了.我上了很多数据科学相关的课程,旁听过更多课程的部分内容.我知道对于一个准备成为数据分析师或数据科学家的初学者来说有哪些选择,以及什么样的技能是必需的.几个月前,我开始创建一个用评价驱动的指南,用来为数据科学中的每个主题推

《Python数据科学实践指南》——第1章 Python介绍 1.1 Python的版本之争

第1章 Python介绍 本书主要介绍数据科学所使用的工具,但因为每一种语言都有自己的生态系统,而笔者多用Python,所以本书主要会从Python的角度来介绍这些工具.阅读本书的读者,不管之前的基础如何,如果对Python这门编程语言有一定的了解,将能更好地掌握书中内容.可能有很多读者曾经在学校里学过C/C++或是VB,又或者听说过Java.PHP等这样广泛使用的编程语言,初闻Python的时候可能会对这个名字略感陌生,不过这一点并不能阻碍Python成为数据科学领域的"一等公民".