poj1144 - tarjan求割点

何为割点?也就是题目中的关键点。在一个无向图中,去掉一个点,这个无向图会变成多个子图,那么这个点就叫做割点

同理,割边也是如此,如果去掉一条边,能让无向图变成多个子图,那么这条边叫做割边,所谓的桥。

 

那么tarjan是如何求的割点的呢?

如果u为割点,当且仅当满足下面的1/2

1、如果u为树根,那么u必须有多于1棵子树

2、如果u不为树根,那么(u,v)为树枝边,当Low[v]>=DFN[u]时。

 

割点的求法倒是看明白了,条件1的意思是若为根,下面如果只有一颗子树,也就是整个图是强连通,那么去掉根节点,肯定不会变成多个子图,因此也不会成为割点。只有大于一颗子树,去掉根节点,才会有两个或者2个以上的子图,从而才能成为割点

 

条件2也比较好理解,u不为树根,那么u肯定有祖先,如果存在Low【v】>=DFN【u】时,表示u的子孙只能通过u才能访问u的祖先,这也就是说,不通过u,u的子孙无法访问u的祖先,那么如果去掉u这个节点,就会至少分为两个子图,一个是u祖先,一个是u子孙的。

 

但是还是不明白tarjan为何在求Low数组时一个是Min(Low[u], Low[i]); 一个是Min(Low[u], DFN[i]);在上一篇求强连通分量时,如果将Min(Low[u], DFN[i]);也改为Min(Low[u], Low[i]);照样能求出强连通分量,但是如果在求割点的时候改,就会WA。还是想咨询大牛,这个细微的差别到底为什么,到现在还是不懂?看来图论这一块还是没吃透,吃不透,代码就得背,背代码没意思,理解了,怎么写都可以。求神人给出解释哈,谢谢!

 

代码

[cpp] view
plain
copy

  1. #include <stdio.h>  
  2. #include <stdlib.h>  
  3. #include <string.h>  
  4.   
  5. #define nMax 110  
  6. #define Min(a,b) (a<b?a:b)  
  7. #define Max(a,b) (a>b?a:b)  
  8. int map[nMax][nMax];  
  9. int DFN[nMax],Low[nMax];  
  10. bool isVisted[nMax];  
  11. int gPoint[nMax];  
  12. int index, root;  
  13. int n,ans;  
  14. void tarjan(int u)  
  15. {  
  16.     DFN[u] = Low[u] = ++index;  
  17.     isVisted[u] = true;  
  18.     for (int i = 1; i <= n; ++ i)  
  19.     {  
  20.         if (map[u][i])  
  21.         {  
  22.             if (!isVisted[i])  
  23.             {  
  24.                 tarjan(i);  
  25.                 Low[u] = Min(Low[u], Low[i]);  
  26.                 if (Low[i] >= DFN[u] && u != 1)//if it is not root  
  27.                 {  
  28.                     gPoint[u] ++;  
  29.                 }  
  30.                 else if (u == 1)//if it is root  
  31.                 {  
  32.                     root ++;  
  33.                 }  
  34.             }  
  35.             else  
  36.             {  
  37.                 Low[u] = Min(Low[u], DFN[i]);  
  38.             }  
  39.         }  
  40.     }  
  41. }  
  42. int main()  
  43. {  
  44.     while (scanf("%d", &n) && n)  
  45.     {  
  46.         int u, v;  
  47.         memset(map, 0, sizeof(map));  
  48.         memset(isVisted, false, sizeof(isVisted));  
  49.         memset(gPoint, 0, sizeof(gPoint));  
  50.         ans = root = index = 0;  
  51.         while (scanf("%d", &u) && u)  
  52.         {  
  53.             while (getchar() != '\n')  
  54.             {  
  55.                 scanf("%d", &v);  
  56.                 map[u][v] = 1;  
  57.                 map[v][u] = 1;  
  58.             }  
  59.         }  
  60.         tarjan(1);  
  61.         if (root > 1)  
  62.         {  
  63.             ans ++;  
  64.         }  
  65.         for (int i = 2; i <= n; ++ i)  
  66.         {  
  67.             if (gPoint[i])  
  68.             {  
  69.                 ans ++;  
  70.             }  
  71.         }  
  72.         printf("%d\n", ans);  
  73.     }  
  74.     return 0;  
  75. }  

犀利的评论:

low[u]表示的意思是与"u节点及其子孙节点"相连的最先被访问到的点的访问序号。表示u节点最早可从那个节点访问到。所以说:
(1)每次从儿子节点递归回来,需要比较更新Min(Low[u], Low[i];
(2)当遇到的节点不是儿子节点时,也要更新,因为有可能该点的访问次序比较靠前。
我看楼主在更新Min(Low[u], DFN[i])时没有判断i是否为u的父亲节点,跟我的想法一样啊,这里是没有必要进行判断的,虽然很多书上都说需要进行判断。

一个图(v,e)点为1,2,3,4,5,边有(1,2),(2,3),(1,3),(3,4),(4,5),(3,5),令1为树根。显然3为割点。不妨假设搜索顺序是(1,2),(2,3),(3,1),(3,4),(4,5),(5,3),搜索到(3,1)的时候,更新low[3] = dfn[1] = 1,然后搜索(3,4)、(4,5),(5,3),发现3已经遍历,那么如果此时采用low[u]
= min(low[u], low[v])的话,会更新low[5] = low[3] = 1,回溯到4,low[4] = low[5] = 1,回溯到3,low[3] = low[4] = 1,然后比较发现low[4] < dfn[3],判断出3不是割点,算法错误。

poj1144-tarjan求割点

时间: 2024-12-02 13:19:44

poj1144 - tarjan求割点的相关文章

算法:poj 1523 SPF(tarjan求割点)

题意 给一个连通的无向图,求这个图的所有割点,并且输出各个割点和相连的边去掉之后,会变成几 个连通分量 思路 用tarjan求割点的基础题,要求对tarjan算法的原理真正搞懂,这题就水了. 代码 /**===================================================== * This is a solution for ACM/ICPC problem * * @source : poj-1523 SPF * @description : 图的连通性-ta

网易有道笔试:求连通图的割点(关节点)

题目:求一个连通图的割点,割点的定义是,如果除去此节点和与其相关的边,图不再连通,描述算法. 分析: 1. 最简单也是最直接的算法是,删除一个点然后判断连通性,如果删除此点,图不再连通,则此点是割点,反之不是割点(图的连通性一般通过深搜来判定,是否能一次搜索完 全部顶点): 2. 通过深搜优先生成树来判定.从任一点出发深度优先遍历得到优先生成树,对于树中任一顶点V而言,其孩子节点为邻接点.由深度优先生成树可得出两类割点的特性:      (1)若生成树的根有两棵或两棵以上的子树,则此根顶点必为割

求树中两个结点的最近公共祖先

剑指offer上的最后一题了,一个递归函数调了一下午,才得到正确的结果. 题目描述: 给定一棵树,同时给出树中的两个结点,求它们的最低公共祖先. 输入: 输入可能包含多个测试样例. 对于每个测试案例,输入的第一行为一个数n(0<n<1000),代表测试样例的个数. 其中每个测试样例包括两行,第一行为一个二叉树的先序遍历序列,其中左右子树若为空则用0代替,其中二叉树的结点个数node_num<10000. 第二行为树中的两个结点的值m1与m2(0<m1,m2<10000). 输

UVAoj 11324 - The Largest Clique(tarjan + dp)

题意:给定一个有向图,寻找一个点数最大集合,使得这个集合中的任意两个点u,v, 都有u->v 或者 v->u 或者u<==>v 思路:首先将强连通分量通过tarjan算法求出来,然后进行缩点,也就是每一个缩点所组成的图就是一个DAG图!令每一个点的权值就是这个缩点所包含节点(也就是对应的强连通分量的节点数目),因为强连通分量的任意的两个节点都是相互可达的,那么这个 缩点要么选要么不选,问题就转换成了DAG图上的最长路径! #include<iostream> #incl

【POJ 1330 Nearest Common Ancestors】LCA问题 Tarjan算法

题目链接:http://poj.org/problem?id=1330 题意:给定一个n个节点的有根树,以及树中的两个节点u,v,求u,v的最近公共祖先. 数据范围:n [2, 10000] 思路:从树根出发进行后序深度优先遍历,设置vis数组实时记录是否已被访问. 每遍历完一棵子树r,把它并入以r的父节点p为代表元的集合.这时判断p是不是所要求的u, v节点之一,如果r==u,且v已访问过,则lca(u, v)必为v所属集合的代表元.p==v的情况类似. 我的第一道LCA问题的Tarjan算法

【HDU 4547 CD操作】LCA问题 Tarjan算法

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4547 题意:模拟DOS下的cd命令,给出n个节点的目录树以及m次查询,每个查询包含一个当前目录cur和一个目标目录tar,返回从cur切换到tar所要使用的cd命令次数: 注意这里的cd命令是简化版,只能进行如下两种操作: 1. cd   ..                                        //返回父目录 2. cd   cur\一系列目录\tar          

【POJ 1236 Network of Schools】强联通分量问题 Tarjan算法,缩点

题目链接:http://poj.org/problem?id=1236 题意:给定一个表示n所学校网络连通关系的有向图.现要通过网络分发软件,规则是:若顶点u,v存在通路,发给u,则v可以通过网络从u接收到. 现要求解两个问题: TaskA: 最少分发给几个学校,就可以使所有的学校都能得到软件. TaskB: 最少增加几条边,就可以使得,发软件给任一学校,所有学校都可以收到. 思路:先进行强联通分量分解,然后缩点,并计算缩点后每个点的出度.入度.入度为0的点的总数为 a ,出度为0的点总数为 b

求按百分比抽取数据算法

问题描述 求按百分比抽取数据算法 我有个需求 要求用百分比抽取数据以达到数据审阅的目的 我做了一个简单的程序但达不到要求 <?php header('Content-Type: text/html; charset=utf-8'); //抽取算法 for($kou=1;$kou<=100;$kou++){ $kou_count=0; for($i=1;$i<=100;$i++){ $key=($i)%(100/$kou); if( intval( $key ) == 0){ //echo

udp java-JAVA UDP协议下怎么样才能突破局域网内的双向通信啊?求高人务必指导下。。。。

问题描述 JAVA UDP协议下怎么样才能突破局域网内的双向通信啊?求高人务必指导下.... 本人是个接触JAVA2个月的菜鸟,最近在研究UDP广域网的通信,实现的过程也就是常说的双向通信:客户端(局域网内)先发数据给远方的服务器(服务器是公网IP,映射了个端口),服务器能收到,但是服务器不能回发数据给客户端...对于这方面的问题,在网上找了很多资料,全是局域网内的,网上说什么UDP打洞啊,穿透啊等等的,说实话有点晕,直到有一天在网上一个论坛看到同样类似的帖子,主人说根本就不需要什么UDP打洞这