数据结构与算法04 之二叉树

   在有序数组中,可以快速找到特定的值,但是想在有序数组中插入一个新的数据项,就必须首先找出新数据项插入的位置,然后将比新数据项大的数据项向后移动一位,来给新的数据项腾出空间,删除同理,这样移动很费时。显而易见,如果要做很多的插入和删除操作和删除操作,就不该选用有序数组。

        另一方面,链表中可以快速添加和删除某个数据项,但是在链表中查找数据项可不容易,必须从头开始访问链表的每一个数据项,直到找到该数据项为止,这个过程很慢。

        树这种数据结构,既能像链表那样快速的插入和删除,又能想有序数组那样快速查找。这里主要实现一种特殊的树——二叉(搜索)树。二叉搜索树有如下特点:一个节点的左子节点的关键字值小于这个节点,右子节点的关键字值大于或等于这个节点。插入一个节点需要根据这个规则进行插入。

        删除节点时二叉搜索树中最复杂的操作,但是删除节点在很多树的应用中又非常重要,所以详细研究并总结下特点。删除节点要从查找要删的节点开始入手,首先找到节点,这个要删除的节点可能有三种情况需要考虑:

         ·该节点是叶节点,没有子节点

         ·该节点有一个子节点

         ·该节点有两个子节点

         第一种最简单,第二种也还是比较简单的,第三种就相当复杂了。下面分析这三种删除情况:

        要删除叶节点,只需要改变该节点的父节点对应子字段的值即可,由指向该节点改为null就可以了。垃圾回收器会自动回收叶节点,不需要自己手动删掉;当节点有一个子节点时,这个节点只有两个连接:连向父节点和连向它唯一的子节点。需要从这个序列中剪断这个节点,把它的子节点直接连到它的父节点上即可,这个过程要求改变父节点适当的引用(左子节点还是右子节点),指向要删除节点的子节点即可;第三种情况最复杂,如果要删除有两个子节点的节点,就不能只用它的一个子节点代替它,比如要删除节点25,如果用35取代它,那35的左子节点是15呢还是30?

   

        因此需要考虑另一种方法,寻找它的中序后继来代替该节点。下图显示的就是要删除节点用它的后继代替它的情况,删除后还是有序的。(这里还有更麻烦的情况,即它的后继自己也有右子节点,下面再讨论。)

        那么如何找后继节点呢?首先得找到要删除的节点的右子节点,它的关键字值一定比待删除节点的大。然后转到待删除节点右子节点的左子节点那里(如果有的话),然后到这个左子节点的左子节点,以此类推,顺着左子节点的路径一直向下找,这个路径上的最后一个左子节点就是待删除节点的后继。如果待删除节点的右子节点没有左子节点,那么这个右子节点本身就是后继。寻找后继的示意图如下:

        找到了后继节点,现在开始删除了,先看第一种情况,后继节点是delNode右子节点的做后代,这种情况要执行以下四个步骤:

         ·把后继父节点的leftChild字段置为后继的右子节点;

         ·把后继的rightChild字段置为要删除节点的右子节点;

         ·把待删除节点从它父节点的leftChild或rightChild字段删除,把这个字段置为后继;

         ·把待删除的左子节点移除,将后继的leftChild字段置为待删除节点的左子节点。

        如下图所示:

        如果后继节点就是待删除节点的右子节点,这种情况就简单了,因为只需要把后继为跟的子树移到删除的节点的位置即可。如下图所示:

        看到这里,就会发现删除时相当棘手的操作。实际上,因为它非常复杂,一些程序员都尝试着躲开它,他们在Node类中加了一个Boolean字段来标识该节点是否已经被删除,在其他操作之前会先判断这个节点是不是已经删除了,这样删除节点不会改变树的结构,。当然树中还保留着这种已经删除的节点,对存储造成浪费,但是如果没有那么多删除的话,这也不失为一个好方法。下面是二叉搜索树的主要代码:

[java] view plain copy

 

  1. public class BinaryTree {  
  2.     private BNode root; //根节点  
  3.       
  4.     public BinaryTree() {  
  5.         root = null;  
  6.     }  
  7.       
  8.     //二叉搜索树查找的时间复杂度为O(logN)  
  9.     public BNode find(int key) { //find node with given key  
  10.         BNode current = root;  
  11.         while(current.key != key) {  
  12.             if(key < current.key) {  
  13.                 current = current.leftChild;  
  14.             }  
  15.             else {  
  16.                 current = current.rightChild;  
  17.             }  
  18.             if(current == null) {  
  19.                 return null;  
  20.             }  
  21.         }  
  22.         return current;  
  23.     }  
  24.       
  25.     //插入节点  
  26.     public void insert(int key, double value) {  
  27.         BNode newNode = new BNode();  
  28.         newNode.key = key;  
  29.         newNode.data = value;  
  30.         if(root == null) { //if tree is null  
  31.             root = newNode;  
  32.         }  
  33.         else {  
  34.             BNode current = root;  
  35.             BNode parent;  
  36.             while(true) {  
  37.                 parent = current;  
  38.                 if(key < current.data) { //turn left  
  39.                     current = current.leftChild;  
  40.                     if(current == null) {  
  41.                         parent.leftChild = newNode;  
  42.                         newNode.parent = parent;  
  43.                         return;  
  44.                     }  
  45.                 }  
  46.                 else { //turn right  
  47.                     current = current.rightChild;  
  48.                     if(current == null) {  
  49.                         parent.rightChild = newNode;  
  50.                         newNode.parent = parent;  
  51.                         return;  
  52.                     }  
  53.                 }  
  54.             }  
  55.         }  
  56.     }  
  57.       
  58.     //遍历二叉树  
  59.     public void traverse(int traverseType) {  
  60.         switch(traverseType)  
  61.         {  
  62.         case 1: System.out.println("Preorder traversal:");  
  63.                 preOrder(root);//前向遍历  
  64.                 break;  
  65.         case 2: System.out.println("Inorder traversal:");  
  66.                 inOrder(root);//中向遍历  
  67.                 break;  
  68.         case 3: System.out.println("Postorder traversal:");  
  69.                 postOrder(root);//后向遍历  
  70.                 break;  
  71.         default: System.out.println("Inorder traversal:");  
  72.                 inOrder(root);  
  73.                 break;  
  74.         }  
  75.         System.out.println("");  
  76.     }  
  77.       
  78.     //前向遍历  
  79.     private void preOrder(BNode localRoot) {  
  80.         if(localRoot != null) {  
  81.             System.out.print(localRoot.data + " ");  
  82.             preOrder(localRoot.leftChild);  
  83.             preOrder(localRoot.rightChild);  
  84.         }  
  85.     }  
  86.       
  87.     //中向遍历  
  88.     private void inOrder(BNode localRoot) {  
  89.         if(localRoot != null) {  
  90.             inOrder(localRoot.leftChild);  
  91.             System.out.print(localRoot.data + " ");  
  92.             inOrder(localRoot.rightChild);  
  93.         }  
  94.     }  
  95.       
  96.     //后向遍历  
  97.     private void postOrder(BNode localRoot) {  
  98.         if(localRoot != null) {  
  99.             postOrder(localRoot.leftChild);  
  100.             postOrder(localRoot.rightChild);  
  101.             System.out.print(localRoot.data + " ");  
  102.         }  
  103.     }  
  104.       
  105.     //查找最小值  
  106.     /*根据二叉搜索树的存储规则,最小值应该是左边那个没有子节点的那个节点*/  
  107.     public BNode minNumber() {  
  108.         BNode current = root;  
  109.         BNode parent = root;  
  110.         while(current != null) {  
  111.             parent = current;  
  112.             current = current.leftChild;  
  113.         }     
  114.         return parent;  
  115.     }  
  116.       
  117.     //查找最大值  
  118.     /*根据二叉搜索树的存储规则,最大值应该是右边那个没有子节点的那个节点*/  
  119.     public BNode maxNumber() {  
  120.         BNode current = root;  
  121.         BNode parent = root;  
  122.         while(current != null) {  
  123.             parent = current;  
  124.             current = current.rightChild;  
  125.         }     
  126.         return parent;  
  127.     }  
  128.       
  129.     //删除节点  
  130.     /* 
  131.      * 删除节点在二叉树中是最复杂的,主要有三种情况: 
  132.      * 1. 该节点没有子节点(简单) 
  133.      * 2. 该节点有一个子节点(还行) 
  134.      * 3. 该节点有两个子节点(复杂) 
  135.      * 删除节点的时间复杂度为O(logN) 
  136.      */  
  137.     public boolean delete(int key) {  
  138.         BNode current = root;  
  139. //      BNode parent = root;  
  140.         boolean isLeftChild = true;  
  141.           
  142.         if(current == null) {  
  143.             return false;  
  144.         }  
  145.         //寻找要删除的节点  
  146.         while(current.data != key) {  
  147. //          parent = current;  
  148.             if(key < current.key) {  
  149.                 isLeftChild = true;  
  150.                 current = current.leftChild;  
  151.             }  
  152.             else {  
  153.                 isLeftChild = false;  
  154.                 current = current.rightChild;  
  155.             }  
  156.             if(current == null) {  
  157.                 return false;  
  158.             }  
  159.         }  
  160.           
  161.         //找到了要删除的节点,下面开始删除  
  162.         //1. 要删除的节点没有子节点,直接将其父节点的左子节点或者右子节点赋为null即可  
  163.         if(current.leftChild == null && current.rightChild == null) {  
  164.             return deleteNoChild(current, isLeftChild);  
  165.         }  
  166.           
  167.         //3. 要删除的节点有两个子节点  
  168.         else if(current.leftChild != null && current.rightChild != null) {  
  169.             return deleteTwoChild(current, isLeftChild);  
  170.         }  
  171.           
  172.         //2. 要删除的节点有一个子节点,直接将其砍断,将其子节点与其父节点连起来即可,要考虑特殊情况就是删除根节点,因为根节点没有父节点  
  173.         else {  
  174.             return deleteOneChild(current, isLeftChild);  
  175.         }  
  176.           
  177.     }  
  178.       
  179.     public boolean deleteNoChild(BNode node, boolean isLeftChild) {  
  180.         if(node == root) {  
  181.             root = null;  
  182.             return true;  
  183.         }  
  184.         if(isLeftChild) {  
  185.             node.parent.leftChild = null;  
  186.         }  
  187.         else {  
  188.             node.parent.rightChild = null;  
  189.         }  
  190.         return true;  
  191.     }  
  192.       
  193.     public boolean deleteOneChild(BNode node, boolean isLeftChild) {  
  194.         if(node.leftChild == null) {  
  195.             if(node == root) {  
  196.                 root = node.rightChild;  
  197.                 node.parent = null;  
  198.                 return true;  
  199.             }  
  200.             if(isLeftChild) {  
  201.                 node.parent.leftChild  = node.rightChild;  
  202.             }  
  203.             else {  
  204.                 node.parent.rightChild = node.rightChild;  
  205.             }  
  206.             node.rightChild.parent = node.parent;  
  207.         }  
  208.         else {  
  209.             if(node == root) {  
  210.                 root = node.leftChild;  
  211.                 node.parent = null;  
  212.                 return true;  
  213.             }  
  214.             if(isLeftChild) {  
  215.                 node.parent.leftChild  = node.leftChild;  
  216.             }  
  217.             else {  
  218.                 node.parent.rightChild = node.leftChild;  
  219.             }  
  220.             node.leftChild.parent = node.parent;  
  221.         }  
  222.         return true;  
  223.     }  
  224.       
  225.     public boolean deleteTwoChild(BNode node, boolean isLeftChild) {  
  226.         BNode successor = getSuccessor(node);  
  227.         if(node == root) {  
  228.             successor.leftChild = root.leftChild;  
  229.             successor.rightChild = root.rightChild;  
  230.             successor.parent = null;  
  231.             root = successor;  
  232.         }  
  233.         else if(isLeftChild) {  
  234.             node.parent.leftChild = successor;  
  235.         }  
  236.         else {  
  237.             node.parent.rightChild = successor;  
  238.         }  
  239.         successor.leftChild = node.leftChild;//connect successor to node's left child  
  240.         return true;  
  241.     }  
  242.       
  243.     //获得要删除节点的后继节点(中序遍历的下一个节点)  
  244.     public BNode getSuccessor(BNode delNode) {  
  245.         BNode successor = delNode;  
  246.         BNode current = delNode.rightChild;  
  247.         while(current != null) {  
  248.             successor = current;  
  249.             current = current.leftChild;  
  250.         }  
  251.         if(successor != delNode.rightChild) {  
  252.             successor.parent.leftChild = successor.rightChild;  
  253.             if(successor.rightChild != null) {        
  254.                 successor.rightChild.parent = successor.parent;//删除后续节点在原来的位置  
  255.             }  
  256.             successor.rightChild = delNode.rightChild;//将后续节点放到正确位置,与右边连上  
  257.         }  
  258.         return successor;  
  259.     }  
  260. }  
  261.   
  262. class BNode {  
  263.     public int key;  
  264.     public double data;  
  265.     public BNode parent;  
  266.     public BNode leftChild;  
  267.     public BNode rightChild;  
  268.       
  269.     public void displayNode() {  
  270.         System.out.println("{" + key + ":" + data + "}");  
  271.     }  
  272. }  

    二叉树就谈论到这吧,如果有错误之处,欢迎留言指正~

转载:http://blog.csdn.net/eson_15/article/details/51138663

时间: 2024-10-28 18:02:57

数据结构与算法04 之二叉树的相关文章

数据结构和算法15 之二叉树排序

 顾名思义,二叉树排序就是利用二叉搜索树的特点进行排序,前面提到过二叉搜索树的特点是,左子节点比自己小,右子节点比自己大,那么二叉树排序的思想就是先将待排序序列逐个添加到二叉搜索树中去,再通过中序遍历二叉搜索树就可以将数据从小到大取出来.如果对二叉树还不太了解,请看这篇博文:数据结构和算法之二叉树 ,这里不再赘述. 下面我们来看看二叉树排序的实现: [java] view plain copy   public class Tree2Sort {       private Node root;

JavaScript数据结构和算法之二叉树详解

 这篇文章主要介绍了JavaScript数据结构和算法之二叉树详解,本文讲解了二叉树的概念.二叉树的特点.二叉树节点的定义.查找最大和最小值等内容,需要的朋友可以参考下     二叉树的概念 二叉树(Binary Tree)是n(n>=0)个结点的有限集合,该集合或者为空集(空二叉树),或者由一个根结点和两棵互不相交的.分别称为根结点的左子树和右子树的二叉树组成. 二叉树的特点 每个结点最多有两棵子树,所以二叉树中不存在度大于2的结点.二叉树中每一个节点都是一个对象,每一个数据节点都有三个指针,

数据结构与算法(C#实现)系列---演示篇(一)

数据|数据结构|算法 数据结构与算法(C#实现)系列---演示篇(一) Heavenkiller(原创) 这一篇主要是针对以后各篇的数据类型进行一个实质性的演示.因此希望大家具体看了各种数据结构的分析之后再看这篇. 主要包括如下几个方面的演示: 1. 堆栈. 演示了一个利用堆栈作的RPN计算器 2. 排序表.演示了一个利用排序表做的多项式表达式的加法运算 3. 广义树.演示了深度遍历和广度遍历 4. N叉树.演示了N叉树的生成插入删除等基本操作 5. 表达式树.演示了一个用二叉树和堆栈做的可以将

数据结构C语言实现之二叉树

#include <stdio.h>#include <stdlib.h>#define STACK_MAX_SIZE 30#define QUEUE_MAX_SIZE 30#ifndef elemType typedef char elemType;#endif /************************************************************************//* 以下是关于二叉树操作的11个简单算法 *//***********

C++数据结构与算法专题

快速排序算法的C++实现 详解qsort函数的用法 C++求二个数的最大公约数与最小公倍数实例 小览CallStack(调用栈)(三)-用调试器脚本查看调用栈信息 小览call stack(调用栈) (二)--调用约定 小览call stack(调用栈) (一) C++/CLI中栈对象的设计问题 POJ 1694 C++ (排序) 高效实现Josephus算法 利用堆排序实现学生成绩管理 C++双向循环链表的操作与实现 基于Crtpto++的RSA签名算法 自定义函数使用map排序 C++数据结

JavaScript数据结构和算法之图和图算法

 这篇文章主要介绍了JavaScript数据结构和算法之图和图算法,本文讲解了有向图.无序图.简单图.图的遍历等内容,需要的朋友可以参考下     图的定义 图(Graph)是由顶点的有穷非空集合和顶点之间边的集合组成,通常表示为:G(V,E),其中,G表示一个图,V是图G中顶点的集合,E是图G中边的集合. 有向图 有向边:若从顶点Vi到Vj的边有方向,则称这条边为有向边,也成为弧(Arc),用有序偶<Vi,Vj>来表示,Vi称为弧尾,Vj称为弧头. 无序图 无向边:若顶点Vi到Vj之间的边没

[转]MySQL索引背后的数据结构及算法原理

引用:http://blog.codinglabs.org/articles/theory-of-mysql-index.html 摘要 本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题.特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BTree索引,哈希索引,全文索引等等.为了避免混乱,本文将只关注于BTree索引,因为这是平常使用MySQL时主要打交道的索引,至于哈希索引和全文索引本文暂不讨论. 文章

[数据库]MySQL索引背后的数据结构及算法原理

一 写在前面的话 在编程领域有一句人尽皆知的法则"程序 = 数据结构 + 算法",我个人是不太赞同这句话(因为我觉得程序不仅仅是数据结构加算法),但是在日常的学习和工作中我确认深深感受到数据结构和算法的重要性,很多东西,如果你愿意稍稍往深处挖一点,那么扑面而来的一定是各种数据结构和算法知识.例如几乎每个程序员都要打交道的数据库,如果仅仅是用来存个数据.建建表.建建索引.做做增删改查,那么也许觉得数据结构和这东西没什么关系.不过要是哪天心血来潮,想知道的多一点,想研究一下如何优化数据库,

MySQL索引背后的数据结构及算法原理

看到的一篇关于MySql索引的介绍,感觉比较经典,直接转了. 本文转自张洋博客,原文链接:http://blog.codinglabs.org/articles/theory-of-mysql-index.html 摘要 本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题.特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BTree索引,哈希索引,全文索引等等.为了避免混乱,本文将只关注于BTree索引,因为