《中国人工智能学会通讯》——3.27 控制策略的稳定性分析

3.27 控制策略的稳定性分析

最大限度地激发患者主动参与训练的积极性,确保人机交互稳定性与安全性,并尽可能考虑柔顺性是主动康复训练的基本要求。基于虚拟隧道的控制方案和阻抗控制策略可提供一定的柔顺性,并一定程度上给予安全性保护;通过精确地建立人机系统动力学模型,可计算得到患者对康复机器人主动施加力 / 力矩的大小,判别患者运动意图;通过设计适当的人机交互控制器,例如模糊逻辑控制、神经网络自适应调节器以及基于生物信号的控制器等,可一定程度激发患者自主参与康复训练的积极性。然而,由于机器人与患肢之间存在非线性耦合等不确定性动力学关系,并且缺乏阻抗参数的自适应机制,从而难以严格证明交互过程的稳定性,而系统稳定性对于患者安全至关重要[36] 。

在系统动力学模型不确定或人机运动发生对抗时,现有康复机器人控制系统很难解决闭环系统的稳定性问题[38] 。为此,Zhang 等 [38-39]基于上肢康复机器人,设计了三种控制模式,并研究了相关控制策略的稳定性。该三种控制模式包括人体主导模式、机器人主导模式以及安全停止模式。人体主导模式主要针对运动功能部分恢复患者,由患者主导完成运动训练。机器人主导模式主要针对患肢力量不足或者不可靠的患者,在此类模式中,当患肢偏离参考轨迹时,机器人将提供辅助力,调整患肢姿态与轨迹。安全停止模式用以避免当患者出现肌肉痉挛等情况时对患肢造成二次伤害。为实现人机交互系统的稳定性,Zhang 等[38]设计了由运动控制与交互控制两部分组成的控制器。其中,运动控制部分包含比例控制项、滑膜变量以及回归量,以处理人机交互系统的不确定干扰,进而实现了上述三种控制模式之间的平滑过渡;通过设计位置相关刚度和期望轨迹,交互控制器可避免康复机器人与患肢存在对抗性冲突,确保闭环系统稳定性。文献 [38]首先证明了闭环上肢康复机器人系统的无源性,进而基于 Lyapunov 定理与 Barbalat 引理严格证明得到系统稳定性定理。该定理表明,如果机器人处于人体主导或者机器人主导运动区域,则机器人将收敛至人体主导运动区域;如果机器人进入安全停止区域,则系统将停止运动,且速度越快,系统停止越迅速。仿真分析与人机交互实验表明:交互系统主要在人体主导区域中自由运行,保证人体适量的主动训练任务量;当患肢进入机器人主导运动区域时,系统将辅助患肢平滑过渡至人体主导运动区域;若由于非线性耦合、不确定干扰以及人机交互力的突然变化等因素致使患肢大幅偏离参考轨迹时,系统将进入安全停止模式,避免对患肢造成二次伤害。

针对人机交互可能导致系统不稳定的问题,Yu等[40]提出一种适用于步态训练机器人的交互控制器,并给出数学意义上严格的系统稳定性证明。该控制器由人体交互补偿模块、摩擦补偿模块与干扰观测器组成。当运动在人体主导控制模式中,机器人能够获得较低的输出阻抗;当运动在力控制模式中,机器人能够获得精确的力跟踪性能。在由串联弹性驱动器提供动力,具备本质柔顺性与后向驱动力的踝关节康复机器人上的实验表明,患者与机器人之间可进行安全稳定的交互,并且所述交互控制器在不同的操作模式下均可获得期望的力控制性能。

时间: 2024-10-22 05:35:01

《中国人工智能学会通讯》——3.27 控制策略的稳定性分析的相关文章

中国人工智能学会通讯——机器学习里的贝叶斯基本理论、模型和算法

非常感 谢周老师给这个机会让我跟大家分享一下.我今天想和大家分享的是,在深度学习或者大数据环境下我们怎么去看待相对来说比较传统的一类方法--贝叶斯方法.它是在机器学习和人工智能里比较经典的方法. 类似的报告我之前在CCF ADL讲过,包括去年暑假周老师做学术主任在广州有过一次报告,大家如果想看相关的工作,我们写了一篇文章,正好我今天讲的大部分思想在这个文章里面有一个更系统的讲述,大家可以下去找这篇文章读. 这次分享主要包括三个部分: 第一部分:基本理论.模型和算法 贝叶斯方法基础 正则化贝叶斯推

中国人工智能学会通讯——无智能,不驾驶——面向未来的智能驾驶时代 ( 下 )

到目前为止似乎比较完美,而实际还 存在着一些问题.我们现在看到很多道 路上面,交通标志牌它的分布非常稀疏, 可能每过一两公里才能够检测出来一个 交通标志牌,因为毕竟这个深度学习算 法是目前最完美的,它有时候还会错过 一个交通标志牌,这时候怎么办呢?我 们会发现在路面上也有非常明显的视觉 特征,我只要把路面的这些视觉特征识 别出来进行匹配,其实是有连续的绝对 的视觉参考的.所以我们做的办法是, 把这个路面粘贴起来.这个粘贴的方法 很简单,跟我们手机拍场景图片一样, 我们慢慢移动的时候可以把这个场景

中国人工智能学会通讯——深蓝、沃森与AlphaGo

在 2016 年 3 月 份,正当李 世石与AlphaGo 进行人机大战的时候,我曾经写过 一 篇< 人 工 智 能 的 里 程 碑: 从 深 蓝 到AlphaGo>,自从 1997 年深蓝战胜卡斯帕罗夫之后,随着计算机硬件水平的提高,计算机象棋(包括国际象棋和中国象棋)水平有了很大的提高,达到了可以战胜人类最高棋手的水平.但是,长期以来,在计算机围棋上进展却十分缓慢,在 2006 年引入了蒙特卡洛树搜索方法之后,也只能达到业余 5 段的水平.所以 AlphaGo 战胜韩国棋手李世石,确实是人

中国人工智能学会通讯——深度学习与视觉计算 1.3 计算机视觉领域利用深度学习可能带来的未来研究方向

1.3 计算机视觉领域利用深度学习可能带来的未来研究方向 第一个,深度图像分析.目前基于深度 学习的图像算法在实验数据库上效果还是 不错的,但是远远不能够满足实际大规模 应用需求,需要进一步的提升算法性能从 而能够转化相应的实际应用.比如这个基 于图片的应用,可以估计性别和年龄,但 是其实经常会犯错,因此需要进一步提升 深度图像分析的性能. 第二个,深度视频分析.视频分析牵扯 到大量的数据和计算量,所以做起来更加 麻烦.当前深度视频分析还处于起步的阶 段,然而视频应用非常广泛,比如人机交互. 智

中国人工智能学会通讯——智创未来 未来已来

2016 年带着我们难忘的记忆,就这样翻篇了.由我们学会发起.全国多个组织积极参与的.纪念全球人工智能 60 年的一个个系列活动历历在目,在我们身边发生的种种无人驾驶的比赛和试验活动还在让我们激动不已,AlphaGo 战胜人类围棋冠军李世石的震荡被 Master 的新战绩推向又一个新高潮,时间就这样把我们带入了新的一年--2017 年. 对 2017 年的人工智能,我们会有什么期待呢? 深度学习会火 无人驾驶会火 机器人产业会火 机器同传会火 人机博弈会火 交互认知会火 不确定性人工智能会火 智

中国人工智能学会通讯——着力突破与创新 实现超越与引领

提 要 2016年3月,围棋人机大战的结果,在舆论界激起了惊涛骇浪:在科技界也引起了强烈反响.为了把握人工智能的发展现状和规律,探讨我国人工智能的发展战略,在中国人工智能学会和众多人工智能同行的支持下,由本文作者出面申请了一次高层战略研讨会,这就是以"发展人工智能,引领科技创新"为主题的香山科学会议.与会者同气相求.同心协力,站在国家战略的高度,以纵览全球的视野,通过深入的研讨和论证,凝聚了诸多宝贵的共识,形成了直送中央的<关于加快发展我国人工智能的专家建议>.本文简要介绍

中国人工智能学会通讯——2016机器智能前沿论坛召开

2016 年 12 月 17 日,由中国人工智能学会.中国工程院战略咨询中心主办,今日头条.IEEE<计算科学评论>协办的"2016机器智能前沿论坛"暨"2016 BYTE CUP国际机器学习竞赛颁奖仪式"在中国工程院举办.论坛嘉宾包括中外顶尖的数据挖掘.机器学习,以及自然语言处理方向的专家学者. 与以往不同,本次论坛除介绍机器学习的重大进展和应用外,还着重讨论了机器学习技术在媒体数据上的应用,并为2016 BYTE CUP 国际机器学习竞赛的获奖选手进

中国人工智能学会通讯——Master虽优势较多 但仍有缺陷

近日,Master 在各大围棋网站横扫顶尖职业棋手,随后,谷歌 DeepMind 创始人德米什 • 哈萨比斯在 Twitter 上发布消息,证实了 Master 是 AlphaGo 的升级版.众所周知,围棋困难的地方在于它的估值函数非常不平滑,差一个子盘面就可能天翻地覆:同时状态空间大,也没有全局的结构.这两点加起来,迫使目前计算机只能用穷举法,并且因此进展缓慢.但人能下得好,能在几百个选择中知道哪几个位置值得考虑,说明它的估值函数是有规律的.这些规律远远不是几条简单公式所能概括,但所需的信息量

中国人工智能学会通讯——混合智能概念与新进展

脑科学以阐明脑的工作原理为目标,近年来已成为最重要的科学前沿领域之一.脑功能计算.脑智能模仿再度成为学术界和产业界热议话题[1-4].欧盟.美国.日本相继启动了大型脑研究计划,强有力推动了人们对脑结构.脑功能和脑智能的探索和认识:另一方面,人工智能研究风起云涌,最近一个标志性事件是谷歌的AlphaGo以4:1战胜围棋世界冠军李世石[5],实现了围棋人工智能领域史无前例的突破.2016年9月斯坦福大学发布了<2030年的人工智能与生活>报告[6],全面评估了当前人工智能的进展.挑战.机遇与展望.