[复变函数]第10堂课 3.2 Cauchy 积分定理

 

 

0. 引言

(1) $\dps{\int_{|z-a|=\rho}\frac{1}{z-a}\rd z=2\pi i\neq 0}$: 有奇点 (在 $|z|>0$: 二连通区域内解析), 周线积分 $\neq 0$;

(2) $\dps{\int_{0\to 1+i}\Re z\rd z=\frac{1+i}{2}}$, $\dps{\int_{0\to 1}+\int_{1+1+i}\Re z\rd z=\frac{1}{2}+i}$: 不解析, 积分与路径有关, 周线积分 $\neq 0$.

 

1. Cauchy 积分定理 设 $D$ 为单连通区域, $f$ 在 $D$ 内解析, $C$ 为 $D$ 内任一周线, 则 $\dps{\int_C f(z)\rd z=0}$.

证明 (假设 $f'$ 连续) $$\beex \bea \int_C f(z)\rd z &=\int_C [u+iv]\cdot [\rd x+i\rd y]\\ &=\int_C [u\rd x-v\rd y]+i\int_C [v\rd x+u\rd y]\\ &=\iint_{I(C)} [-v_x-u_y]\rd x\rd y +\iint_{I(C)} [u_x-v_y]\rd x\rd y\\ &=0. \eea \eeex$$

(1) 推论

a. 设 $D$ 为单连通区域, $f$ 在 $D$ 内解析, $C$ 为 $D$ 内任一闭曲线, 则 $\dps{\int_Cf(z)\rd z=0}$. (画图证明)

b. 设 $D$ 为单连通区域, $f$ 在 $D$ 内解析, 则 $f$ 在 $D$ 内的积分与路径无关, 而 $$\bex \forall\ z_0, z\in D,\quad\int_{z_0}^z f(\zeta)\rd \zeta \eex$$ 与所选的从 $z_0$ 到 $z$ 的路径无关. (画图说明)

(2) 推广

a. 设 $C$ 是一条周线, $D=I(C)$, $f$ 在 $\bar D$ 上解析, 则 $\dps{\int_Cf(z)\rd z=0}$. (画图说明)

b. 设 $C$ 是一条周线, $D=I(C)$, $f$ 在 $D$ 内解析, 在 $\bar D$ 上连续 (或称连续到 $C$), 则 $\dps{\int_Cf(z)\rd z=0}$.

c. 复周线: 有界 $(n+1)$ 连通区域的边界 $C=C_0+C_1^-+\cdots+C_n^-$ (画图说明, 指出方向).

d. 设 $D$ 为 $(n+1)$ 连通区域, $f$ 在 $D$ 内解析, 在 $\bar D$ 上连续, 则 $\dps{\int_Cf(z)\rd z=0}$.

(3) 应用

a. 设 $C:|z|=1$, 求 $\dps{\int_C\frac{\rd z}{z+2}}$ 及 $\dps{\int_0^\pi \frac{1+2\cos \tt}{5+4\cos \tt}\rd \tt}$ 的值 (用 Cauchy 定理)

b. 设 $\sqrt{z}$ 确定在沿负实轴割破了的 $z$ 平面上, 且 $w(1) =-1$. 求 $\dps{\int_{|z-1|=1}\sqrt{z}\rd z}$ (用 (2) b).

c. 设 $a$ 为周线 $C$ 内一点, 求 $\dps{\int_C\frac{\rd z}{(z-a)^n}\ (n\in\bbZ)}$ (用 (2) c).

d. 求 $\dps{\int_{|z|=2}\frac{2z^2-z+1}{z-1}\rd z}$.

解答: $$\beex \bea \int_{|z|=2}\frac{2z^2-z+1}{z-1}\rd z &=\int_{|z|=2}\frac{(z-1)^2+3(z-1)+2}{z-1}\rd z\\ &=\int_{|z|=2}[(z-1)+3]\rd z+2\int_{|z|=2}\frac{1}{z-1}\rd z\\ &=0+2\cdot 2\pi i\\ &=4\pi i. \eea \eeex$$

e. 求 $\dps{\int_{|z|=1}\frac{2z^2-z+1}{(z-1)^2}\rd z}$ (答案: $6\pi i$).

 

2. 不定积分

(1) 定义: 设 $D$ 为单连通区域, $f$ 在 $D$ 内解析, $z_0\in D$, 则 $$\bex F(z)=\int_{z_0}^z f(\zeta)\rd \zeta,\quad z\in D \eex$$ (变上限积分) 称为 $f$ 的一个不定积分 (原函数).

(2) $F(z)$ 在 $D$ 内解析, 且 $F'(z)=f(z)$.

(3) N-L 公式: $$\bex \int_{z_0}^z f(\zeta)\rd \zeta=F(z)-F(z_0). \eex$$

 

作业: P 140 T 6. 

时间: 2024-09-20 15:22:15

[复变函数]第10堂课 3.2 Cauchy 积分定理的相关文章

[复变函数]第11堂课 3.3 Cauchy 积分定理及其推论

0. 引言 (1) Cauchy 积分定理: 设 $D$ 为 $(n+1)$ 连通区域, $f$ 在 $D$ 内解析且连续到边界 $C$, 则 $\dps{\int_C f(\zeta)\rd \zeta=0}$. (2) 若 $f$ 在 $D$ 内有奇点, 怎么办? 挖掉它! $$\bex \int_C \cfrac{1}{(\zeta-z)^n}\rd \zeta =\sedd{\ba{ll} 2\pi i,&n=1\\ 0&1\neq n\in\bbZ \ea}\quad\sex{z

[复变函数]第13堂课 作业讲解; 4 解析函数的幂级数表示法 4.1 复级数的基本性质

第13堂课 作业讲解; 4 解析函数的幂级数表示法 4. 1 复级数的基本性质}   作业讲解: P 139 - 141, T 1, T 2 (2) , T 6, T 10 (1) , T 16 (1) .   1. 复数项级数 (1) 定义: 无穷多个复数相加, 即 $\dps{\vsm{n}\al_n=\al_1+\al_2+\cdots+\al_n+\cdots}$. 部分和: $\dps{s_n=\sum_{k=1}^n\al_k}$. 收敛或发散: $\dps{\vlm{n}s_n=s

[复变函数]第21堂课 6 留数理论及其应用 6. 1 留数

0.  引言---回忆 (1)  Cauchy 积分公式 (第三章) $$\beex \bea f\mbox{ 在 }D\mbox{ 内解析}, \mbox{ 在 }\bar D=D+\p D\mbox{ 上连续}&\ra \int_C \cfrac{f(z)}{z-a}\rd z=2\pi if(a),\quad a\in D\\ &\ra \int_C \cfrac{f(z)}{(z-a)^{n+1}}\rd z=\cfrac{2\pi i}{n!}f^{(n)}(a),\quad a

[复变函数]第24堂课 6.3 辐角原理

1.  对数留数 $$\beex \bea \cfrac{1}{2\pi i}\int_C\cfrac{f'(z)}{f(z)}\rd z &=\cfrac{1}{2\pi i}\int_C \rd \ln f(z)\\ &=\cfrac{1}{2\pi i}\int_C\rd \ln |f(z)|+i\rd \arg f(z)\\ &=\cfrac{1}{2\pi }\int_C\rd \arg f(z)\\ &=\cfrac{1}{2\pi }\lap_C\arg f(

[复变函数]第22堂课 6.2 用留数定理计算实积分

3. 函数在 $\infty$ 的留数 (1) 定义: 设 $\infty$ 为 $f$ 的孤立奇点, 则称 $$\bex \cfrac{1}{2\pi i}\int_{\vGa^-}f(z)\rd z\quad (\vGa:\ |z|=\rho) \eex$$ 为 $f$ 在 $\infty$ 的留数, 记作 $\dps{\underset{z=\infty}{\Res}f(z)}$. (2) 若 $f$ 在 $r<|z|<\infty$ 内有 Laurent 展式 $$\bex f(z)=

[复变函数]第23堂课 6.2 用留数定理计算实积分 (续)

2. $\dps{\int_{-\infty}^{+\infty}\cfrac{P(x)}{Q(x)}\rd x}$ 型 ($\deg P=m,\deg Q=n, n-m\geq 2; Q\neq 0$) (1) 数分: 分拆 (2) 复变: 构造围道积分, 而 $$\bex =2\pi i\sum_{\Im a_k>0}\underset{z=a_k}{\Res}\cfrac{P(z)}{Q(z)}. \eex$$ (3) 例: 求 $\dps{I=\int_0^\infty \cfrac{\

《富爸爸 辞职创业前的10堂课》文摘

锻炼销售技能:尽可能快地尝试失败. 那是一个只有少数人才能看到的世界,而我希望能再次看到它.我很激动,为了我曾经看到它的那一刻. 如果一个想创业的人跑来向我展示他的新产品,我的第一个问题就会是:"你有财务算测吗?"如果生意已经建立起来了,我就会问:"你的财务报表呢?"我会问这些问题仍然不是因为我精通它们,而是测试这个人是否做好了起步创业的准备. 因为建立一家公司与'你'无关,而是与其他人有关.是与你的团队.你的顾客.你的老师.以及你能如何为这些人服务有关. 多数人工

[复变函数]第03堂课 1.2 复平面上的点集

    1. 平面点集的几个基本概念 (1) 邻域 $$\bex N_\rho(z_0)=\sed{z\in\bbC;\ |z-z_0|<\rho}, \eex$$ 去心邻域 $N_\rho(z_0)\bs \sed{z_0}$. (2) 点列 $z_n\to z_0$, 若 $$\bex \forall\ \ve>0, \exists\ N,\ \forall\ n\geq N,\ |z_n-z_0|<\ve\mbox{ 即 }z_n\in N_\ve(z_0). \eex$$ (3)

[复变函数]第02堂课 1.1 复数 (续)

4. 一些概念及性质                   (1)              $$\beex             \bea             z=x\in\bbR&\quad\mbox{实数},\\             z=x+iy\ (y\neq 0)&\quad\mbox{虚数},\\             z=iy\ (y\neq 0)&\quad\mbox{纯虚数}.             \eea             \eeex$$