OpenCV进行图像相似度对比的几种办法

转载请注明出处:http://blog.csdn.net/wangyaninglm/article/details/43853435
来自:shiter编写程序的艺术

对计算图像相似度的方法,本文做了如下总结,主要有三种办法:


1.PSNR峰值信噪比

PSNR(Peak Signal to Noise Ratio),一种全参考的图像质量评价指标。

简介:https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio

PSNR是最普遍和使用最为广泛的一种图像客观评价指标,然而它是基于对应像素点间的误差,即基于误差敏感的图像质量评价。由于并未考虑到人眼的视觉特性(人眼对空间频率较低的对比差异敏感度较高,人眼对亮度对比差异的敏感度较色度高,人眼对一个区域的感知结果会受到其周围邻近区域的影响等),因而经常出现评价结果与人的主观感觉不一致的情况。

SSIM(structural similarity)结构相似性,也是一种全参考的图像质量评价指标,它分别从亮度、对比度、结构三方面度量图像相似性。

SSIM取值范围[0,1],值越大,表示图像失真越小.

在实际应用中,可以利用滑动窗将图像分块,令分块总数为N,考虑到窗口形状对分块的影响,采用高斯加权计算每一窗口的均值、方差以及协方差,然后计算对应块的结构相似度SSIM,最后将平均值作为两图像的结构相似性度量,即平均结构相似性MSSIM:


参考资料

[1] 峰值信噪比-维基百科

[2] 王宇庆,刘维亚,王勇. 一种基于局部方差和结构相似度的图像质量评价方法[J]. 光电子激光,2008。
[3]http://www.cnblogs.com/vincent2012/archive/2012/10/13/2723152.html

官方文档的说明,不过是GPU版本的,我们可以修改不用gpu不然还得重新编译

http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/highgui/video-input-psnr-ssim/video-input-psnr-ssim.html#videoinputpsnrmssim
http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/gpu/gpu-basics-similarity/gpu-basics-similarity.html?highlight=psnr


// PSNR.cpp : 定义控制台应用程序的入口点。
//

#include "stdafx.h"

#include <iostream>                   // Console I/O
#include <sstream>                    // String to number conversion

#include <opencv2/core/core.hpp>      // Basic OpenCV structures
#include <opencv2/imgproc/imgproc.hpp>// Image processing methods for the CPU
#include <opencv2/highgui/highgui.hpp>// Read images
#include <opencv2/gpu/gpu.hpp>        // GPU structures and methods

using namespace std;
using namespace cv;

double getPSNR(const Mat& I1, const Mat& I2);      // CPU versions
Scalar getMSSIM( const Mat& I1, const Mat& I2);

double getPSNR_GPU(const Mat& I1, const Mat& I2);  // Basic GPU versions
Scalar getMSSIM_GPU( const Mat& I1, const Mat& I2);

struct BufferPSNR                                     // Optimized GPU versions
{   // Data allocations are very expensive on GPU. Use a buffer to solve: allocate once reuse later.
    gpu::GpuMat gI1, gI2, gs, t1,t2;

    gpu::GpuMat buf;
};
double getPSNR_GPU_optimized(const Mat& I1, const Mat& I2, BufferPSNR& b);

struct BufferMSSIM                                     // Optimized GPU versions
{   // Data allocations are very expensive on GPU. Use a buffer to solve: allocate once reuse later.
    gpu::GpuMat gI1, gI2, gs, t1,t2;

    gpu::GpuMat I1_2, I2_2, I1_I2;
    vector<gpu::GpuMat> vI1, vI2;

    gpu::GpuMat mu1, mu2;
    gpu::GpuMat mu1_2, mu2_2, mu1_mu2; 

    gpu::GpuMat sigma1_2, sigma2_2, sigma12;
    gpu::GpuMat t3; 

    gpu::GpuMat ssim_map;

    gpu::GpuMat buf;
};
Scalar getMSSIM_GPU_optimized( const Mat& i1, const Mat& i2, BufferMSSIM& b);

void help()
{
    cout
        << "\n--------------------------------------------------------------------------" << endl
        << "This program shows how to port your CPU code to GPU or write that from scratch." << endl
        << "You can see the performance improvement for the similarity check methods (PSNR and SSIM)."  << endl
        << "Usage:"                                                               << endl
        << "./gpu-basics-similarity referenceImage comparedImage numberOfTimesToRunTest(like 10)." << endl
        << "--------------------------------------------------------------------------"   << endl
        << endl;
}

int main(int argc, char *argv[])
{
    help();
    Mat I1 = imread("swan1.jpg",1);           // Read the two images
    Mat I2 = imread("swan2.jpg",1);

    if (!I1.data || !I2.data)           // Check for success
    {
        cout << "Couldn't read the image";
        return 0;
    }

    BufferPSNR bufferPSNR;
    BufferMSSIM bufferMSSIM;

    int TIMES;
    stringstream sstr("500");
    sstr >> TIMES;
    double time, result;

    //------------------------------- PSNR CPU ----------------------------------------------------
    time = (double)getTickCount();    

    for (int i = 0; i < TIMES; ++i)
        result = getPSNR(I1,I2);

    time = 1000*((double)getTickCount() - time)/getTickFrequency();
    time /= TIMES;

    cout << "Time of PSNR CPU (averaged for " << TIMES << " runs): " << time << " milliseconds."
        << " With result of: " <<  result << endl; 

    ////------------------------------- PSNR GPU ----------------------------------------------------
    //time = (double)getTickCount();    

    //for (int i = 0; i < TIMES; ++i)
    //  result = getPSNR_GPU(I1,I2);

    //time = 1000*((double)getTickCount() - time)/getTickFrequency();
    //time /= TIMES;

    //cout << "Time of PSNR GPU (averaged for " << TIMES << " runs): " << time << " milliseconds."
    //  << " With result of: " <<  result << endl;
/*
    //------------------------------- PSNR GPU Optimized--------------------------------------------
    time = (double)getTickCount();                                  // Initial call
    result = getPSNR_GPU_optimized(I1, I2, bufferPSNR);
    time = 1000*((double)getTickCount() - time)/getTickFrequency();
    cout << "Initial call GPU optimized:              " << time  <<" milliseconds."
        << " With result of: " << result << endl;

    time = (double)getTickCount();
    for (int i = 0; i < TIMES; ++i)
        result = getPSNR_GPU_optimized(I1, I2, bufferPSNR);

    time = 1000*((double)getTickCount() - time)/getTickFrequency();
    time /= TIMES;

    cout << "Time of PSNR GPU OPTIMIZED ( / " << TIMES << " runs): " << time
        << " milliseconds." << " With result of: " <<  result << endl << endl; 

    //------------------------------- SSIM CPU -----------------------------------------------------
    Scalar x;
    time = (double)getTickCount();    

    for (int i = 0; i < TIMES; ++i)
        x = getMSSIM(I1,I2);

    time = 1000*((double)getTickCount() - time)/getTickFrequency();
    time /= TIMES;

    cout << "Time of MSSIM CPU (averaged for " << TIMES << " runs): " << time << " milliseconds."
        << " With result of B" << x.val[0] << " G" << x.val[1] << " R" << x.val[2] << endl; 

    //------------------------------- SSIM GPU -----------------------------------------------------
    time = (double)getTickCount();    

    for (int i = 0; i < TIMES; ++i)
        x = getMSSIM_GPU(I1,I2);

    time = 1000*((double)getTickCount() - time)/getTickFrequency();
    time /= TIMES;

    cout << "Time of MSSIM GPU (averaged for " << TIMES << " runs): " << time << " milliseconds."
        << " With result of B" << x.val[0] << " G" << x.val[1] << " R" << x.val[2] << endl; 

    //------------------------------- SSIM GPU Optimized--------------------------------------------
    time = (double)getTickCount();
    x = getMSSIM_GPU_optimized(I1,I2, bufferMSSIM);
    time = 1000*((double)getTickCount() - time)/getTickFrequency();
    cout << "Time of MSSIM GPU Initial Call            " << time << " milliseconds."
        << " With result of B" << x.val[0] << " G" << x.val[1] << " R" << x.val[2] << endl; 

    time = (double)getTickCount();    

    for (int i = 0; i < TIMES; ++i)
        x = getMSSIM_GPU_optimized(I1,I2, bufferMSSIM);

    time = 1000*((double)getTickCount() - time)/getTickFrequency();
    time /= TIMES;

    cout << "Time of MSSIM GPU OPTIMIZED ( / " << TIMES << " runs): " << time << " milliseconds."
        << " With result of B" << x.val[0] << " G" << x.val[1] << " R" << x.val[2] << endl << endl;
    return 0;
    */
    getchar();
}

double getPSNR(const Mat& I1, const Mat& I2)
{
    Mat s1;
    absdiff(I1, I2, s1);       // |I1 - I2|
    s1.convertTo(s1, CV_32F);  // cannot make a square on 8 bits
    s1 = s1.mul(s1);           // |I1 - I2|^2

    Scalar s = sum(s1);         // sum elements per channel

    double sse = s.val[0] + s.val[1] + s.val[2]; // sum channels

    if( sse <= 1e-10) // for small values return zero
        return 0;
    else
    {
        double  mse =sse /(double)(I1.channels() * I1.total());
        double psnr = 10.0*log10((255*255)/mse);
        return psnr;
    }
}

double getPSNR_GPU_optimized(const Mat& I1, const Mat& I2, BufferPSNR& b)
{
    b.gI1.upload(I1);
    b.gI2.upload(I2);

    b.gI1.convertTo(b.t1, CV_32F);
    b.gI2.convertTo(b.t2, CV_32F);

    gpu::absdiff(b.t1.reshape(1), b.t2.reshape(1), b.gs);
    gpu::multiply(b.gs, b.gs, b.gs);

    double sse = gpu::sum(b.gs, b.buf)[0];

    if( sse <= 1e-10) // for small values return zero
        return 0;
    else
    {
        double mse = sse /(double)(I1.channels() * I1.total());
        double psnr = 10.0*log10((255*255)/mse);
        return psnr;
    }
}

double getPSNR_GPU(const Mat& I1, const Mat& I2)
{
    gpu::GpuMat gI1, gI2, gs, t1,t2; 

    gI1.upload(I1);
    gI2.upload(I2);

    gI1.convertTo(t1, CV_32F);
    gI2.convertTo(t2, CV_32F);

    gpu::absdiff(t1.reshape(1), t2.reshape(1), gs);
    gpu::multiply(gs, gs, gs);

    Scalar s = gpu::sum(gs);
    double sse = s.val[0] + s.val[1] + s.val[2];

    if( sse <= 1e-10) // for small values return zero
        return 0;
    else
    {
        double  mse =sse /(double)(gI1.channels() * I1.total());
        double psnr = 10.0*log10((255*255)/mse);
        return psnr;
    }
}

Scalar getMSSIM( const Mat& i1, const Mat& i2)
{
    const double C1 = 6.5025, C2 = 58.5225;
    /***************************** INITS **********************************/
    int d     = CV_32F;

    Mat I1, I2;
    i1.convertTo(I1, d);           // cannot calculate on one byte large values
    i2.convertTo(I2, d); 

    Mat I2_2   = I2.mul(I2);        // I2^2
    Mat I1_2   = I1.mul(I1);        // I1^2
    Mat I1_I2  = I1.mul(I2);        // I1 * I2

    /*************************** END INITS **********************************/

    Mat mu1, mu2;   // PRELIMINARY COMPUTING
    GaussianBlur(I1, mu1, Size(11, 11), 1.5);
    GaussianBlur(I2, mu2, Size(11, 11), 1.5);

    Mat mu1_2   =   mu1.mul(mu1);
    Mat mu2_2   =   mu2.mul(mu2);
    Mat mu1_mu2 =   mu1.mul(mu2);

    Mat sigma1_2, sigma2_2, sigma12; 

    GaussianBlur(I1_2, sigma1_2, Size(11, 11), 1.5);
    sigma1_2 -= mu1_2;

    GaussianBlur(I2_2, sigma2_2, Size(11, 11), 1.5);
    sigma2_2 -= mu2_2;

    GaussianBlur(I1_I2, sigma12, Size(11, 11), 1.5);
    sigma12 -= mu1_mu2;

    ///////////////////////////////// FORMULA ////////////////////////////////
    Mat t1, t2, t3; 

    t1 = 2 * mu1_mu2 + C1;
    t2 = 2 * sigma12 + C2;
    t3 = t1.mul(t2);              // t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))

    t1 = mu1_2 + mu2_2 + C1;
    t2 = sigma1_2 + sigma2_2 + C2;
    t1 = t1.mul(t2);               // t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2))

    Mat ssim_map;
    divide(t3, t1, ssim_map);      // ssim_map =  t3./t1;

    Scalar mssim = mean( ssim_map ); // mssim = average of ssim map
    return mssim;
}

Scalar getMSSIM_GPU( const Mat& i1, const Mat& i2)
{
    const float C1 = 6.5025f, C2 = 58.5225f;
    /***************************** INITS **********************************/
    gpu::GpuMat gI1, gI2, gs1, t1,t2; 

    gI1.upload(i1);
    gI2.upload(i2);

    gI1.convertTo(t1, CV_MAKE_TYPE(CV_32F, gI1.channels()));
    gI2.convertTo(t2, CV_MAKE_TYPE(CV_32F, gI2.channels()));

    vector<gpu::GpuMat> vI1, vI2;
    gpu::split(t1, vI1);
    gpu::split(t2, vI2);
    Scalar mssim;

    for( int i = 0; i < gI1.channels(); ++i )
    {
        gpu::GpuMat I2_2, I1_2, I1_I2; 

        gpu::multiply(vI2[i], vI2[i], I2_2);        // I2^2
        gpu::multiply(vI1[i], vI1[i], I1_2);        // I1^2
        gpu::multiply(vI1[i], vI2[i], I1_I2);       // I1 * I2

        /*************************** END INITS **********************************/
        gpu::GpuMat mu1, mu2;   // PRELIMINARY COMPUTING
        gpu::GaussianBlur(vI1[i], mu1, Size(11, 11), 1.5);
        gpu::GaussianBlur(vI2[i], mu2, Size(11, 11), 1.5);

        gpu::GpuMat mu1_2, mu2_2, mu1_mu2;
        gpu::multiply(mu1, mu1, mu1_2);
        gpu::multiply(mu2, mu2, mu2_2);
        gpu::multiply(mu1, mu2, mu1_mu2);   

        gpu::GpuMat sigma1_2, sigma2_2, sigma12; 

        gpu::GaussianBlur(I1_2, sigma1_2, Size(11, 11), 1.5);
        //sigma1_2 = sigma1_2 - mu1_2;
        gpu::subtract(sigma1_2,mu1_2,sigma1_2);

        gpu::GaussianBlur(I2_2, sigma2_2, Size(11, 11), 1.5);
        //sigma2_2 = sigma2_2 - mu2_2;

        gpu::GaussianBlur(I1_I2, sigma12, Size(11, 11), 1.5);
        (Mat)sigma12 =(Mat)sigma12 - (Mat)mu1_mu2;
        //sigma12 = sigma12 - mu1_mu2

        ///////////////////////////////// FORMULA ////////////////////////////////
        gpu::GpuMat t1, t2, t3; 

//      t1 = 2 * mu1_mu2 + C1;
//      t2 = 2 * sigma12 + C2;
//      gpu::multiply(t1, t2, t3);     // t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))
//
//      t1 = mu1_2 + mu2_2 + C1;
//      t2 = sigma1_2 + sigma2_2 + C2;
//      gpu::multiply(t1, t2, t1);     // t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2))

        gpu::GpuMat ssim_map;
        gpu::divide(t3, t1, ssim_map);      // ssim_map =  t3./t1;

        Scalar s = gpu::sum(ssim_map);
        mssim.val[i] = s.val[0] / (ssim_map.rows * ssim_map.cols);

    }
    return mssim;
}

Scalar getMSSIM_GPU_optimized( const Mat& i1, const Mat& i2, BufferMSSIM& b)
{
    int cn = i1.channels();

    const float C1 = 6.5025f, C2 = 58.5225f;
    /***************************** INITS **********************************/

    b.gI1.upload(i1);
    b.gI2.upload(i2);

    gpu::Stream stream;

    stream.enqueueConvert(b.gI1, b.t1, CV_32F);
    stream.enqueueConvert(b.gI2, b.t2, CV_32F);      

    gpu::split(b.t1, b.vI1, stream);
    gpu::split(b.t2, b.vI2, stream);
    Scalar mssim;

    for( int i = 0; i < b.gI1.channels(); ++i )
    {
        gpu::multiply(b.vI2[i], b.vI2[i], b.I2_2, stream);        // I2^2
        gpu::multiply(b.vI1[i], b.vI1[i], b.I1_2, stream);        // I1^2
        gpu::multiply(b.vI1[i], b.vI2[i], b.I1_I2, stream);       // I1 * I2

        //gpu::GaussianBlur(b.vI1[i], b.mu1, Size(11, 11), 1.5, 0, BORDER_DEFAULT, -1, stream);
        //gpu::GaussianBlur(b.vI2[i], b.mu2, Size(11, 11), 1.5, 0, BORDER_DEFAULT, -1, stream);

        gpu::multiply(b.mu1, b.mu1, b.mu1_2, stream);
        gpu::multiply(b.mu2, b.mu2, b.mu2_2, stream);
        gpu::multiply(b.mu1, b.mu2, b.mu1_mu2, stream);   

        //gpu::GaussianBlur(b.I1_2, b.sigma1_2, Size(11, 11), 1.5, 0, BORDER_DEFAULT, -1, stream);
        //gpu::subtract(b.sigma1_2, b.mu1_2, b.sigma1_2, stream);
        //b.sigma1_2 -= b.mu1_2;  - This would result in an extra data transfer operation

        //gpu::GaussianBlur(b.I2_2, b.sigma2_2, Size(11, 11), 1.5, 0, BORDER_DEFAULT, -1, stream);
        //gpu::subtract(b.sigma2_2, b.mu2_2, b.sigma2_2, stream);
        //b.sigma2_2 -= b.mu2_2;

        //gpu::GaussianBlur(b.I1_I2, b.sigma12, Size(11, 11), 1.5, 0, BORDER_DEFAULT, -1, stream);
        //gpu::subtract(b.sigma12, b.mu1_mu2, b.sigma12, stream);
        //b.sigma12 -= b.mu1_mu2;

        //here too it would be an extra data transfer due to call of operator*(Scalar, Mat)
        gpu::multiply(b.mu1_mu2, 2, b.t1, stream); //b.t1 = 2 * b.mu1_mu2 + C1;
        //gpu::add(b.t1, C1, b.t1, stream);
        gpu::multiply(b.sigma12, 2, b.t2, stream); //b.t2 = 2 * b.sigma12 + C2;
        //gpu::add(b.t2, C2, b.t2, stream);     

        gpu::multiply(b.t1, b.t2, b.t3, stream);     // t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))

        //gpu::add(b.mu1_2, b.mu2_2, b.t1, stream);
        //gpu::add(b.t1, C1, b.t1, stream);

        //gpu::add(b.sigma1_2, b.sigma2_2, b.t2, stream);
        //gpu::add(b.t2, C2, b.t2, stream);

        gpu::multiply(b.t1, b.t2, b.t1, stream);     // t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2))
        gpu::divide(b.t3, b.t1, b.ssim_map, stream);      // ssim_map =  t3./t1;

        stream.waitForCompletion();

        Scalar s = gpu::sum(b.ssim_map, b.buf);
        mssim.val[i] = s.val[0] / (b.ssim_map.rows * b.ssim_map.cols);

    }
    return mssim;
}

两幅一样的图片,对比结果:



2.感知哈希算法

(perceptual hash algorithm)

http://blog.csdn.net/fengbingchun/article/details/42153261

感知哈希算法(perceptual hash algorithm),它的作用是对每张图像生成一个“指纹”(fingerprint)字符串,然后比较不同图像的指纹。结果越接近,就说明图像越相似。

实现步骤:

  1. 缩小尺寸:将图像缩小到8*8的尺寸,总共64个像素。这一步的作用是去除图像的细节,只保留结构/明暗等基本信息,摒弃不同尺寸/比例带来的图像差异;
  2. 简化色彩:将缩小后的图像,转为64级灰度,即所有像素点总共只有64种颜色;
  3. 计算平均值:计算所有64个像素的灰度平均值;
  4. 比较像素的灰度:将每个像素的灰度,与平均值进行比较,大于或等于平均值记为1,小于平均值记为0;
  5. 计算哈希值:将上一步的比较结果,组合在一起,就构成了一个64位的整数,这就是这张图像的指纹。组合的次序并不重要,只要保证所有图像都采用同样次序就行了;
  6. 得到指纹以后,就可以对比不同的图像,看看64位中有多少位是不一样的。在理论上,这等同于”汉明距离”(Hamming distance,在信息论中,两个等长字符串之间的汉明距离是两个字符串对应位置的不同字符的个数)。如果不相同的数据位数不超过5,就说明两张图像很相似;如果大于10,就说明这是两张不同的图像。
    以上内容摘自:http://www.ruanyifeng.com/blog/2011/07/principle_of_similar_image_search.html

代码:

// similarity.cpp : 定义控制台应用程序的入口点。
//

#include "stdafx.h"
#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>

#pragma comment(lib,"opencv_core2410d.lib")
#pragma comment(lib,"opencv_highgui2410d.lib")
#pragma comment(lib,"opencv_imgproc2410d.lib")    

using namespace std;

int _tmain(int argc, _TCHAR* argv[])
{

    string strSrcImageName = "swan.jpg";

    cv::Mat matSrc, matSrc1, matSrc2;

    matSrc = cv::imread(strSrcImageName, CV_LOAD_IMAGE_COLOR);
    CV_Assert(matSrc.channels() == 3);

    cv::resize(matSrc, matSrc1, cv::Size(357, 419), 0, 0, cv::INTER_NEAREST);
    //cv::flip(matSrc1, matSrc1, 1);
    cv::resize(matSrc, matSrc2, cv::Size(2177, 3233), 0, 0, cv::INTER_LANCZOS4);

    cv::Mat matDst1, matDst2;

    cv::resize(matSrc1, matDst1, cv::Size(8, 8), 0, 0, cv::INTER_CUBIC);
    cv::resize(matSrc2, matDst2, cv::Size(8, 8), 0, 0, cv::INTER_CUBIC);

    cv::cvtColor(matDst1, matDst1, CV_BGR2GRAY);
    cv::cvtColor(matDst2, matDst2, CV_BGR2GRAY);

    int iAvg1 = 0, iAvg2 = 0;
    int arr1[64], arr2[64];

    for (int i = 0; i < 8; i++)
    {
        uchar* data1 = matDst1.ptr<uchar>(i);
        uchar* data2 = matDst2.ptr<uchar>(i);

        int tmp = i * 8;

        for (int j = 0; j < 8; j++)
        {
            int tmp1 = tmp + j;

            arr1[tmp1] = data1[j] / 4 * 4;
            arr2[tmp1] = data2[j] / 4 * 4;

            iAvg1 += arr1[tmp1];
            iAvg2 += arr2[tmp1];
        }
    }

    iAvg1 /= 64;
    iAvg2 /= 64;

    for (int i = 0; i < 64; i++)
    {
        arr1[i] = (arr1[i] >= iAvg1) ? 1 : 0;
        arr2[i] = (arr2[i] >= iAvg2) ? 1 : 0;
    }

    int iDiffNum = 0;

    for (int i = 0; i < 64; i++)
        if (arr1[i] != arr2[i])
            ++iDiffNum;

    cout<<"iDiffNum = "<<iDiffNum<<endl;

    if (iDiffNum <= 5)
        cout<<"two images are very similar!"<<endl;
    else if (iDiffNum > 10)
        cout<<"they are two different images!"<<endl;
    else
        cout<<"two image are somewhat similar!"<<endl;

    getchar();
    return 0;
}

一幅图片自己对比:

结果:


3.计算特征点

OpenCV的feature2d module中提供了从局部图像特征(Local image feature)的检测、特征向量(feature vector)的提取,到特征匹配的实现。其中的局部图像特征包括了常用的几种局部图像特征检测与描述算子,如FAST、SURF、SIFT、以及ORB。对于高维特征向量之间的匹配,OpenCV主要有两种方式:

1)BruteForce穷举法;
2)FLANN近似K近邻算法(包含了多种高维特征向量匹配的算法,例如随机森林等)。

feature2d module: http://docs.opencv.org/modules/features2d/doc/features2d.html

OpenCV FLANN: http://docs.opencv.org/modules/flann/doc/flann.html

FLANN: http://www.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN

原文:

http://blog.csdn.net/icvpr/article/details/8491369

//localfeature.h
#ifndef _FEATURE_H_
#define _FEATURE_H_

#include <iostream>
#include <vector>
#include <string>

#include <opencv2/opencv.hpp>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/nonfree/nonfree.hpp>
#include <opencv2/nonfree/features2d.hpp>
using namespace cv;
using namespace std;

class Feature
{
public:
    Feature();
    ~Feature();

    Feature(const string& detectType, const string& extractType, const string& matchType);

public:

    void detectKeypoints(const Mat& image, vector<KeyPoint>& keypoints);  // 检测特征点
    void extractDescriptors(const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptor);  // 提取特征向量
    void bestMatch(const Mat& queryDescriptor, Mat& trainDescriptor, vector<DMatch>& matches);  // 最近邻匹配
    void knnMatch(const Mat& queryDescriptor, Mat& trainDescriptor, vector<vector<DMatch>>& matches, int k);  // K近邻匹配

    void saveKeypoints(const Mat& image, const vector<KeyPoint>& keypoints, const string& saveFileName = "");  // 保存特征点
    void saveMatches(const Mat& queryImage,
        const vector<KeyPoint>& queryKeypoints,
        const Mat& trainImage,
        const vector<KeyPoint>& trainKeypoints,
        const vector<DMatch>& matches,
        const string& saveFileName = "");  // 保存匹配结果到图片中

private:
    Ptr<FeatureDetector> m_detector;
    Ptr<DescriptorExtractor> m_extractor;
    Ptr<DescriptorMatcher> m_matcher;

    string m_detectType;
    string m_extractType;
    string m_matchType;

};

#endif

//localfeature.cpp

#include "stdafx.h"
#include "localfeature.h"

Feature::Feature()
{
    m_detectType = "SIFT";
    m_extractType = "SIFT";
    m_matchType = "BruteForce";
}

Feature::~Feature()
{

}

Feature::Feature(const string& detectType, const string& extractType, const string& matchType)
{
    assert(!detectType.empty());
    assert(!extractType.empty());
    assert(!matchType.empty());

    m_detectType = detectType;
    m_extractType = extractType;
    m_matchType = matchType;
}

void Feature::detectKeypoints(const Mat& image, std::vector<KeyPoint>& keypoints)
{
    assert(image.type() == CV_8UC1);
    assert(!m_detectType.empty());

    keypoints.clear();

    initModule_nonfree();

    m_detector = FeatureDetector::create(m_detectType);
    m_detector->detect(image, keypoints);

}

void Feature::extractDescriptors(const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptor)
{
    assert(image.type() == CV_8UC1);
    assert(!m_extractType.empty());

    initModule_nonfree();
    m_extractor = DescriptorExtractor::create(m_extractType);
    m_extractor->compute(image, keypoints, descriptor);

}

void Feature::bestMatch(const Mat& queryDescriptor, Mat& trainDescriptor, std::vector<DMatch>& matches)
{
    assert(!queryDescriptor.empty());
    assert(!trainDescriptor.empty());
    assert(!m_matchType.empty());

    matches.clear();

    m_matcher = DescriptorMatcher::create(m_matchType);
    m_matcher->add(std::vector<Mat>(1, trainDescriptor));
    m_matcher->train();
    m_matcher->match(queryDescriptor, matches);

}

void Feature::knnMatch(const Mat& queryDescriptor, Mat& trainDescriptor, std::vector<std::vector<DMatch>>& matches, int k)
{
    assert(k > 0);
    assert(!queryDescriptor.empty());
    assert(!trainDescriptor.empty());
    assert(!m_matchType.empty());

    matches.clear();

    m_matcher = DescriptorMatcher::create(m_matchType);
    m_matcher->add(std::vector<Mat>(1, trainDescriptor));
    m_matcher->train();
    m_matcher->knnMatch(queryDescriptor, matches, k);

}

void Feature::saveKeypoints(const Mat& image, const vector<KeyPoint>& keypoints, const string& saveFileName)
{
    assert(!saveFileName.empty());

    Mat outImage;
    cv::drawKeypoints(image, keypoints, outImage, Scalar(255,255,0), DrawMatchesFlags::DRAW_RICH_KEYPOINTS );

    //
    string saveKeypointsImgName = saveFileName + "_" + m_detectType + ".jpg";
    imwrite(saveKeypointsImgName, outImage);

}

void Feature::saveMatches(const Mat& queryImage,
    const vector<KeyPoint>& queryKeypoints,
    const Mat& trainImage,
    const vector<KeyPoint>& trainKeypoints,
    const vector<DMatch>& matches,
    const string& saveFileName)
{
    assert(!saveFileName.empty());

    Mat outImage;
    cv::drawMatches(queryImage, queryKeypoints, trainImage, trainKeypoints, matches, outImage,
        Scalar(255, 0, 0), Scalar(0, 255, 255), vector<char>(),  DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);

    //
    string saveMatchImgName = saveFileName + "_" + m_detectType + "_" + m_extractType + "_" + m_matchType + ".jpg";
    imwrite(saveMatchImgName, outImage);
}

// main.cpp : 定义控制台应用程序的入口点。
//

#include "stdafx.h"
#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/nonfree/nonfree.hpp>
#include <opencv2/nonfree/features2d.hpp>  

#include "localfeature.h"

#pragma comment(lib,"opencv_core2410d.lib")
#pragma comment(lib,"opencv_highgui2410d.lib")
#pragma comment(lib,"opencv_imgproc2410d.lib")
#pragma comment(lib,"opencv_nonfree2410d.lib")
#pragma comment(lib,"opencv_features2d2410d.lib")    

using namespace std;

int main(int argc, char** argv)
{
    /*if (argc != 6)
    {
        cout << "wrong usage!" << endl;
        cout << "usage: .exe FAST SIFT BruteForce queryImage trainImage" << endl;
        return -1;
    }*/

    string detectorType = "SIFT";
    string extractorType = "SIFT";
    string matchType = "BruteForce";
    string queryImagePath = "swan.jpg";
    string trainImagePath = "swan.jpg";

    Mat queryImage = imread(queryImagePath, CV_LOAD_IMAGE_GRAYSCALE);
    if (queryImage.empty())
    {
        cout<<"read failed"<< endl;
        return -1;
    }

    Mat trainImage = imread(trainImagePath, CV_LOAD_IMAGE_GRAYSCALE);
    if (trainImage.empty())
    {
        cout<<"read failed"<< endl;
        return -1;
    }

    Feature feature(detectorType, extractorType, matchType);

    vector<KeyPoint> queryKeypoints, trainKeypoints;
    feature.detectKeypoints(queryImage, queryKeypoints);
    feature.detectKeypoints(trainImage, trainKeypoints);

    Mat queryDescriptor, trainDescriptor;

    feature.extractDescriptors(queryImage, queryKeypoints, queryDescriptor);
    feature.extractDescriptors(trainImage, trainKeypoints, trainDescriptor);

    vector<DMatch> matches;
    feature.bestMatch(queryDescriptor, trainDescriptor, matches);

    vector<vector<DMatch>> knnmatches;
    feature.knnMatch(queryDescriptor, trainDescriptor, knnmatches, 2);

    Mat outImage;
    feature.saveMatches(queryImage, queryKeypoints, trainImage, trainKeypoints, matches, "../");

    return 0;
}

两幅同样图片结果:

几年前上学时候写了这个文章,没想到现在居然是博客访问最高的一篇文章,现在我又收集了一些论文文档资料,当然衡量图像相似度的方法有很多不止上述的三种方法,具体我们再看看论文和外围资料,下载链接:

http://download.csdn.net/detail/wangyaninglm/9764301

转载请注明出处:http://blog.csdn.net/wangyaninglm/article/details/51533549
来自:
shiter编写程序的艺术

时间: 2024-11-01 03:28:06

OpenCV进行图像相似度对比的几种办法的相关文章

JPG格式图像相似度对比。

问题描述 JPG格式图像相似度对比. 对jpg格式的图片提取特征需要先对其进行解码转换成位图,然后再利用对应的特征提取方法提取特征吗? 解决方案 最简单的,可以使用灰度直方图作为特征, 解决方案二: 不用吧,看你什么方法能把颜色信息提取出来就行,推荐opencv,psnr

图片像素对比OpenCV实现,实现人工分割跟算法分割图像结果的对比

图片对比,计算不同像素个数,已经比率.实现人工分割跟算法分割图像结果的对比,但是只能用灰度图像作为输入   // imageMaskComparison.cpp : 定义控制台应用程序的入口点. // // imageMaskComparison.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.h

c++-利用OpenCV比较图像旋转角度

问题描述 利用OpenCV比较图像旋转角度 有两个图,已经加载到Mat中,期中的一个图是另一个图经过一定的旋转得到的,我想利用OpenCV来获得被旋转图是旋转了多少度.希望各位大虾能给点思路或者方法,谢谢了! 解决方案 不知道我说的符不符合你的情况哈 . 我这边以前也弄过图片旋转, 一张图片经过旋转后,再保存就会发现它的 width 跟height不一样的 , 一般是变大,比如旋转九十度,那么它的宽就成了高了,旋转的角度与宽高变化的关系可以用数学式子整理出来.不知道用在你那上面对不对了 .这只是

图片的相似度对比

问题描述 现在在对比图片过程中遇到了这类图片.http://img.bbs.csdn.net/upload/201601/23/1453532447_177941.jpghttp://img.bbs.csdn.net/upload/201601/23/1453532683_139088.jpg1.A图的大小和B图的大小不一致,需要先将图片都归为同样大小.2.A图背景只是纯白色的,而B图的背景是有杂色的如果要实现对比,可能需要将A图缩小,然后对对比B图中的图像.这个要怎么来实现他们的相似度呢??

图像相似度算法的C#实现及测评

闲言碎语 才疏学浅,只把计算图像相似度的一个基本算法的基本实现方式给罗列了出来,以至于在最后自己测评的时候也大发感慨,这个算法有点不靠谱.不管怎么样,这个算法有时候还是有用的,所以还是列出来跟大家伙一起分享分享~~ PS:图像处理这一块博大精深,个人偶尔发现了点东西拿来分享.说的不好的地方,写得太糟的地方,诸位准备扔砖头还望淡定,淡定~~ 基本知识介绍 颜色直方图 颜色直方图是在许多图像检索系统中被广泛采用的颜色特征,它所描述的是不同色彩在整幅图像中所占的比例,而并不关心每种色彩所处的空间位置,

图像相似度算法的一点粗糙应用——GUI测试

因为一些私人的事情,本来早已经应该完成的一篇文章一直到今天才可以草草了结.在前面的两篇文 章<图像相似度算法的C#实现及测评><对"画条线"(Draw a line)的单元测试几点想法和实践 >中 ,先后介绍了一个简单的会读直方图算法和一些关于GUI画图的测试想法.有必要说明的是,在<对"画 条线"(Draw a line)的单元测试几点想法和实践>中提到的几种方法,最实用的是Mock法并不是今天 的主题. 这篇文章中继续前面的思

13 款最热门的 jQuery 图像 360 度旋转插件推荐_jquery

在 web 页面上使用 jQuery 图像 360 度旋转插件是最美也是最方便的显示图像的方式.这些超级棒的 360° 图像选择插件允许用户更详细的分析产品或者文章.jQuery 图像旋转插件可以让用户从各种角度进行 360 度的图像展示,经常在电子商务网站上使用,帮助消费者更好的了解产品,从任意的一个角度观察欣赏. 在这篇文章中,我们收集了 13 款最佳的 jQuery 图像 360 度旋转插件,这些插件都能进行 360 度图像旋转展示.希望大家能从中找到自己喜欢的,并应用在自己的网站上. 1

使用Python+OpenCV进行图像模板匹配(Match Template)

本篇文章介绍使用Python和OpenCV对图像进行模板匹配和识别.模板匹配是在图像中寻找和识别模板的一种简单的方法.以下是具体的步骤及代码. 首先导入所需库文件,numpy和cv2. #导入所需库文件  import cv2  import numpy as np  然后加载原始图像和要搜索的图像模板.OpenCV对原始图像进行处理,创建一个灰度版本,在灰度图像里进行处理和查找匹配.然后使用相同的坐标在原始图像中进行还原并输出. #加载原始RGB图像  img_rgb = cv2.imread

利用OpenCV检测图像中的长方形画布或纸张并提取图像内容

原文:利用OpenCV检测图像中的长方形画布或纸张并提取图像内容 基于知乎上的一个答案.问题如下: 也就是在一张照片里,已知有个长方形的物体,但是经过了透视投影,已经不再是规则的长方形,那么如何提取这个图形里的内容呢?这是个很常见的场景,比如在博物馆里看到一幅很喜欢的画,用手机找了下来,可是回家一看歪歪斜斜,脑补原画内容又觉得不对,那么就需要算法辅助来从原图里提取原来的内容了.不妨把应用的场景分为以下: 纸张四角的坐标(图中红点)已知的情况 也就是上面的左图中4个红点是可以准确获取,比如手动标注