怎么理解Condition

版权声明:本文为本作者原创文章,转载请注明出处。感谢码梦为生| 刘锟洋 的投稿。

在java.util.concurrent包中,有两个很特殊的工具类,Condition和ReentrantLock,使用过的人都知道,ReentrantLock(重入锁)是jdk的concurrent包提供的一种独占锁的实现。它继承自Dong Lea的 AbstractQueuedSynchronizer(同步器),确切的说是ReentrantLock的一个内部类继承了AbstractQueuedSynchronizer,ReentrantLock只不过是代理了该类的一些方法,可能有人会问为什么要使用内部类在包装一层? 我想是安全的关系,因为AbstractQueuedSynchronizer中有很多方法,还实现了共享锁,Condition(稍候再细说)等功能,如果直接使ReentrantLock继承它,则很容易出现AbstractQueuedSynchronizer中的API被误用的情况。

言归正传,今天,我们讨论下Condition工具类的实现。

ReentrantLock和Condition的使用方式通常是这样的:

运行后,结果如下:

可以看到,

Condition的执行方式,是当在线程1中调用await方法后,线程1将释放锁,并且将自己沉睡,等待唤醒,

线程2获取到锁后,开始做事,完毕后,调用Condition的signal方法,唤醒线程1,线程1恢复执行。

以上说明Condition是一个多线程间协调通信的工具类,使得某个,或者某些线程一起等待某个条件(Condition),只有当该条件具备( signal 或者 signalAll方法被带调用)时 ,这些等待线程才会被唤醒,从而重新争夺锁。

那,它是怎么实现的呢?

首先还是要明白,reentrantLock.newCondition() 返回的是Condition的一个实现,该类在AbstractQueuedSynchronizer中被实现,叫做newCondition()

它可以访问AbstractQueuedSynchronizer中的方法和其余内部类( AbstractQueuedSynchronizer是个抽象类,至于他怎么能访问,这里有个很奇妙的点,后面我专门用demo说明 )

现在,我们一起来看下Condition类的实现,还是从上面的demo入手,

为了方便书写,我将AbstractQueuedSynchronizer缩写为AQS

当await被调用时,代码如下:

public final void await() throws InterruptedException {
if (Thread.interrupted())
 throw new InterruptedException();
 Node node = addConditionWaiter(); //将当前线程包装下后,
                                   //添加到Condition自己维护的一个链表中。
int savedState = fullyRelease(node);//释放当前线程占有的锁,从demo中看到,
                                       //调用await前,当前线程是占有锁的

int interruptMode = 0;
 while (!isOnSyncQueue(node)) {//释放完毕后,遍历AQS的队列,看当前节点是否在队列中,
                           //不在 说明它还没有竞争锁的资格,所以继续将自己沉睡。
                             //直到它被加入到队列中,聪明的你可能猜到了,
                            //没有错,在singal的时候加入不就可以了?
 LockSupport.park(this);
 if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
 break;
 }
//被唤醒后,重新开始正式竞争锁,同样,如果竞争不到还是会将自己沉睡,等待唤醒重新开始竞争。
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
 interruptMode = REINTERRUPT;
 if (node.nextWaiter != null)
 unlinkCancelledWaiters();
 if (interruptMode != 0)
 reportInterruptAfterWait(interruptMode);
 }

回到上面的demo,锁被释放后,线程1开始沉睡,这个时候线程因为线程1沉睡时,会唤醒AQS队列中的头结点,所所以线程2会开始竞争锁,并获取到,等待3秒后,线程2会调用signal方法,“发出”signal信号,signal方法如下:

public final void signal() {
 if (!isHeldExclusively())
 throw new IllegalMonitorStateException();
 Node first = firstWaiter; //firstWaiter为condition自己维护的一个链表的头结点,
                          //取出第一个节点后开始唤醒操作
 if (first != null)
 doSignal(first);
 }

说明下,其实Condition内部维护了等待队列的头结点和尾节点,该队列的作用是存放等待signal信号的线程,该线程被封装为Node节点后存放于此。

关键的就在于此,我们知道AQS自己维护的队列是当前等待资源的队列,AQS会在资源被释放后,依次唤醒队列中从前到后的所有节点,使他们对应的线程恢复执行。直到队列为空。

而Condition自己也维护了一个队列,该队列的作用是维护一个等待signal信号的队列,两个队列的作用是不同,事实上,每个线程也仅仅会同时存在以上两个队列中的一个,流程是这样的:

1. 线程1调用reentrantLock.lock时,线程被加入到AQS的等待队列中。

2. 线程1调用await方法被调用时,该线程从AQS中移除,对应操作是锁的释放。

3. 接着马上被加入到Condition的等待队列中,以为着该线程需要signal信号。

4. 线程2,因为线程1释放锁的关系,被唤醒,并判断可以获取锁,于是线程2获取锁,并被加入到AQS的等待队列中。

5.  线程2调用signal方法,这个时候Condition的等待队列中只有线程1一个节点,于是它被取出来,并被加入到AQS的等待队列中。  注意,这个时候,线程1 并没有被唤醒。

6. signal方法执行完毕,线程2调用reentrantLock.unLock()方法,释放锁。这个时候因为AQS中只有线程1,于是,AQS释放锁后按从头到尾的顺序唤醒线程时,线程1被唤醒,于是线程1回复执行。

7. 直到释放所整个过程执行完毕。

可以看到,整个协作过程是靠结点在AQS的等待队列和Condition的等待队列中来回移动实现的,Condition作为一个条件类,很好的自己维护了一个等待信号的队列,并在适时的时候将结点加入到AQS的等待队列中来实现的唤醒操作。

看到这里,signal方法的代码应该不难理解了。

取出头结点,然后doSignal


private void doSignal(Node first) {
 do {
 if ( (firstWaiter = first.nextWaiter) == null) //修改头结点,完成旧头结点的移出工作
 lastWaiter = null;
 first.nextWaiter = null;
 } while (!transferForSignal(first) &&//将老的头结点,加入到AQS的等待队列中
 (first = firstWaiter) != null);
 }

final boolean transferForSignal(Node node) {
 /*
 * If cannot change waitStatus, the node has been cancelled.
 */
 if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))
 return false;

/*
 * Splice onto queue and try to set waitStatus of predecessor to
 * indicate that thread is (probably) waiting. If cancelled or
 * attempt to set waitStatus fails, wake up to resync (in which
 * case the waitStatus can be transiently and harmlessly wrong).
 */
 Node p = enq(node);
 int ws = p.waitStatus;
//如果该结点的状态为cancel 或者修改waitStatus失败,则直接唤醒。
 if (ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL))
 LockSupport.unpark(node.thread);
 return true;
 }

可以看到,正常情况 ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL) 这个判断是不会为true的,所以,不会在这个时候唤醒该线程。

只有到发送signal信号的线程调用reentrantLock.unlock()后因为它已经被加到AQS的等待队列中,所以才会被唤醒。

总结:

     本文从代码的角度说明了Condition的实现方式,其中,涉及到了AQS的很多操作,比如AQS的等待队列实现独占锁功能,不过,这不是本文讨论的重点,等有机会再将AQS的实现单独分享出来。

时间: 2024-09-14 13:34:14

怎么理解Condition的相关文章

整理对Spark SQL的理解

Catalyst Catalyst是与Spark解耦的一个独立库,是一个impl-free的执行计划的生成和优化框架. 目前与Spark Core还是耦合的,对此user邮件组里有人对此提出疑问,见mail.   以下是Catalyst较早时候的架构图,展示的是代码结构和处理流程. Catalyst定位 其他系统如果想基于Spark做一些类sql.标准sql甚至其他查询语言的查询,需要基于Catalyst提供的解析器.执行计划树结构.逻辑执行计划的处理规则体系等类体系来实现执行计划的解析.生成.

jdk中cocurrent下的AbstractQueuedSynchronizer理解记录

 以前虽然看过一次AQS的源码实现,但在过一段时间后与同学交流时,发觉自己理解并不够深,印像太浅.需要做一个记录整理,帮助自己消化.   AQS中Node的设计:    几个点: 1. Node实现作者: "CLH" (Craig, Landin, and * Hagersten) ,有名的CLH queue 2. 是一个FIFO的链表的实现,对于队列的控制经常要做double-check. 3. Node节点通过一个int waiteStatus代表一些不同意义的状态.   SIGN

GCD 深入理解(一)

本文由@nixzhu翻译至raywenderlich的<grand-central-dispatch-in-depth-part-1> 虽然 GCD 已经出现过一段时间了,但不是每个人都明了其主要内容.这是可以理解的:并发一直很棘手,而 GCD 是基于 C 的 API ,它们就像一组尖锐的棱角戳进 Objective-C 的平滑世界.我们将分两个部分的教程来深入学习 GCD .   在这两部分的系列中,第一个部分的将解释 GCD 是做什么的,并从许多基本的 GCD 函数中找出几个来展示.在第二

深入理解 GraphQL

0.引子 通过上一篇文章我们对 GraphQL 有了基础的了解.我们知道 GraphQL 使用 Schema 来描述数据,并通过制定和实现 GraphQL 规范定义了支持 Schema 查询的 DSQL (Domain Specific Query Language,领域特定查询语言).Schema 帮助将复杂的业务模型数据抽象拆分成细粒度的基础数据结构,而 DSQL 的实现则赋予了前端开发者自由组织和定制请求数据的能力.如果以一张图来表示的话,可以将 GraphQL 看做一条以通用基础业务数据

C++11中的mutex, lock,condition variable实现分析

本文分析的是llvm libc++的实现:http://libcxx.llvm.org/ C++11中的各种mutex, lock对象,实际上都是对posix的mutex,condition的封装.不过里面也有很多细节值得学习. std::mutex 先来看下std::mutex: 包增了一个pthread_mutex_t __m_,很简单,每个函数该干嘛就干嘛. class mutex { pthread_mutex_t __m_; public: mutex() _NOEXCEPT {__m

Java线程中断的本质深入理解

    Java的中断是一种协作机制.也就是说调用线程对象的interrupt方法并不一定就中断了正在运行的线程,它只是要求线程自己在合适的时机中断自己. 一.Java中断的现象 首先,看看Thread类里的几个方法:  public static boolean interrupted 测试当前线程是否已经中断.线程的中断状态 由该方法清除.换句话说,如果连续两次调用该方法,则第二次调用将返回 false(在第一次调用已清除了其中断状态之后,且第二次调用检验完中断状态前,当前线程再次中断的情况

iOS开发之深入理解GCD

本文翻译自 http://www.raywenderlich.com/60749/grand-central-dispatch-in-depth-part-1 原作者:Derek Selander 译者:@nixzhu Github: https://github.com/nixzhu/dev-blog   虽然 GCD 已经出现过一段时间了,但不是每个人都明了其主要内容.这是可以理解的:并发一直很棘手,而 GCD 是基于 C 的 API ,它们就像一组尖锐的棱角戳进 Objective-C 的

ReentrantLock Condition await signal 专题

  Condition的执行方式,是当在线程T1中调用await方法后,线程T1将释放锁,并且将自己阻塞,等待唤醒, 线程T2获取到锁后,开始做事,完毕后,调用Condition的signal方法,唤醒线程T1,在t2执行完unlock后,线程T1恢复执行.  signalAll和signal很像,内部就是将Condition队列里所有的Node都加入到release队列中,仅此而已   代码如下: import org.joda.time.LocalDateTime; import java.

浅析MySQL中的Index Condition Pushdown (ICP 索引条件下推)和Multi-Range Read(MRR 索引多范围查找)查询优化

原文:浅析MySQL中的Index Condition Pushdown (ICP 索引条件下推)和Multi-Range Read(MRR 索引多范围查找)查询优化   本文出处:http://www.cnblogs.com/wy123/p/7374078.html(保留出处并非什么原创作品权利,本人拙作还远远达不到,仅仅是为了链接到原文,因为后续对可能存在的一些错误进行修正或补充,无他)     ICP优化原理 Index Condition Pushdown (ICP),也称为索引条件下推